Human umbilical cord mesenchymal stem cells (hUC-MSCs) alleviate paclitaxel-induced spermatogenesis defects and maintain male fertility

Author:

Zhang YuSheng,Liu YaNan,Teng Zi,Wang ZeLin,Zhu Peng,Wang ZhiXin,Liu FuJun,Liu XueXia

Abstract

AbstractChemotherapeutic drugs can cause reproductive damage by affecting sperm quality and other aspects of male fertility. Stem cells are thought to alleviate the damage caused by chemotherapy drugs and to play roles in reproductive protection and treatment. This study aimed to explore the effects of human umbilical cord mesenchymal stem cells (hUC-MSCs) on alleviating paclitaxel (PTX)-induced spermatogenesis and male fertility defects. An in vivo PTX-induced mice model was constructed to evaluate the reproductive toxicity and protective roles of hUC-MSCs in male fertility improvement. A 14 day PTX treatment regimen significantly attenuated mice spermatogenesis and sperm quality, including affecting spermatogenesis, reducing sperm counts, and decreasing sperm motility. hUC-MSCs treatment could significantly improve sperm functional indicators. Mating experiments with normal female mice and examination of embryo development at 7.5 days post-coitum (dpc) showed that hUC-MSCs restored male mouse fertility that was reduced by PTX. In IVF experiments, PTX impaired sperm fertility and blastocyst development, but hUC-MSCs treatment rescued these indicators. hUC-MSCs’ protective role was also displayed through the increased expression of the fertility-related proteins HSPA2 and HSPA4L in testes with decreased expression in the PTX-treated group. These changes might be related to the PTX-induced decreases in expression of the germ cell proliferation protein PCNA and the meiosis proteins SYCP3, MLH1, and STRA8, which were restored after hUC-MSCs treatment. In the PTX-treated group, the expression of testicular antioxidant proteins SIRT1, NRF2, CAT, SOD1, and PRDX6 was significantly decreased, but hUC-MSCs could maintain these expressions and reverse PTX-related increases in BAX/BCL2 ratios. hUC-MSCs may be a promising agent with antioxidant and anti-apoptosis characteristics that can maintain sperm quality following chemotherapy treatment.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

Springer Science and Business Media LLC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3