Continuum modelling of structure formation of biosilica patterns in diatoms

Author:

Bobeth Manfred,Dianat ArezooORCID,Gutierrez RafaelORCID,Werner David,Yang Hongliu,Eckert HagenORCID,Cuniberti GianaurelioORCID

Abstract

AbstractFormation of regularly structured silica valves of various diatom species is a particularly fascinating phenomenon in biomineralization. Intensive investigations have been devoted to elucidate the formation mechanisms of diatom valve structures. Phase-separation of species-specific organic molecules has been proposed to be involved in pattern formation, where the evolving organic molecule structures serve as template for silica formation. In the present work, using a continuum approach, we investigate the conditions under which silica structures of high regularity can develop within a phase separation model. In relation to previously reported in vitro experiments of silica formation, which revealed the important role of phosphate ions in the self-assembly of organic molecules, we propose a model where phase separation is coupled with a chemical reaction. We analyze the impact of the reaction of phosphate ions with organic molecules on the appearing morphology of the organic template. Two- and three-dimensional simulations of the development of regular stationary patterns are presented. The influence of a confined geometry and an interaction of organic molecules with the walls on pattern formation is also addressed. We expect that our approach will be relevant for experimental studies aiming at inducing structure formation under controlled in vitro conditions.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Community and Home Care

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3