Author:
Yean Chan Yean,Yin Lee Su,Lalitha Pattabhiraman,Ravichandran Manickam
Abstract
Abstract
Background
Enterococci have emerged as a significant cause of nosocomial infections in many parts of the world over the last decade. The most common enterococci strains present in clinical isolates are E. faecalis and E. faecium which have acquired resistant to either gentamicin or vancomycin. The conventional culture test takes 2–5 days to yield complete information of the organism and its antibiotic sensitivity pattern. Hence our present study was focused on developing a nanoplex PCR assay for the rapid detection of vancomycin and bifunctional aminoglycoside resistant enterococci (V-BiA-RE). This assay simultaneously detects 8 genes namely 16S rRNA of Enterococcus genus, ddl of E. faecalis and E. faecium, aac A-aph D that encodes high level gentamicin resistance (HLGR), multilevel vancomycin resistant genotypes such as van A, van B, van C and van D and one internal control gene.
Results
Unique and specific primer pairs were designed to amplify the 8 genes. The specificity of the primers was confirmed by DNA sequencing of the nanoplex PCR products and BLAST analysis. The sensitivity and specificity of V-BiA-RE nanoplex PCR assay was evaluated against the conventional culture method. The analytical sensitivity of the assay was found to be 1 ng at the DNA level while the analytical specificity was evaluated with 43 reference enterococci and non-enterococcal strains and was found to be 100%. The diagnostic accuracy was determined using 159 clinical specimens, which showed that 97% of the clinical isolates belonged to E. faecalis, of which 26% showed the HLGR genotype, but none were vancomycin resistant. The presence of an internal control in the V-BiA-RE nanoplex PCR assay helped us to rule out false negative cases.
Conclusion
The nanoplex PCR assay is robust and can give results within 4 hours about the 8 genes that are essential for the identification of the most common Enterococcus spp. and their antibiotic sensitivity pattern. The PCR assay developed in this study can be used as an effective surveillance tool to study the prevalence of enterococci and their antibiotic resistance pattern in hospitals and farm animals.
Publisher
Springer Science and Business Media LLC
Subject
Microbiology (medical),Microbiology
Reference30 articles.
1. Simonsen GS, Smabrekke L, Monnet DL, Sorensen TL, Moller JK, Kristinsson KG, Lagerqvist-Widh A, Torell E, Digranes A, Harthug S, Sundsfjord A: Prevalence of resistance to ampicillin, gentamicin and vancomycin in Enterococcus faecalis and Enterococcus faecium isolates from clinical specimens and use of antimicrobials in five Nordic hospitals. J Antimicrob Chemother. 2003, 51 (2): 323-331. 10.1093/jac/dkg052.
2. Phillips I, Casewell M, Cox T, De Groot B, Friis C, Jones R, Nightingale C, Preston R, Waddell J: Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data. J Antimicrob Chemother. 2004, 53 (1): 28-52. 10.1093/jac/dkg483.
3. Cetinkaya Y, Falk P, Mayhall CG: Vancomycin-resistant enterococci. Clin Microbiol Rev. 2000, 13 (4): 686-707. 10.1128/CMR.13.4.686-707.2000.
4. Fisher DA, Lin R, Chai L, Kumarasinghe G, Singh K, Tambyah PA: Vancomycin-resistant enterococci in a Singapore teaching hospital prior to 2005. Singapore Med J. 2005, 46 (6): 311-312.
5. Raja NS, Karunakaran R, Ngeow YF, Awang R: Community-acquired vancomycin-resistant Enterococcus faecium: a case report from Malaysia. J Med Microbiol. 2005, 54 (Pt 9): 901-903. 10.1099/jmm.0.46169-0.
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献