Susceptibility of Pediococcus isolates to antimicrobial compounds in relation to hop-resistance and beer-spoilage

Author:

Haakensen Monique,Vickers David M,Ziola Barry

Abstract

Abstract Background Though important in the context of food microbiology and as potential pathogens in immuno-compromised humans, bacterial isolates belonging to the genus Pediococcus are best known for their association with contamination of ethanol fermentation processes (beer, wine, or fuel ethanol). Use of antimicrobial compounds (e.g., hop-compounds, Penicillin) by some industries to combat Pediococcus contaminants is long-standing, yet knowledge about the resistance of pediococci to antimicrobial agents is minimal. Here we examined Pediococcus isolates to determine whether antibiotic resistance is associated with resistance to hops, presence of genes known to correlate with beer spoilage, or with ability to grow in beer. Results Lactic acid bacteria susceptibility test broth medium (LSM) used in combination with commercially available GPN3F antimicrobial susceptibility plates was an effective method for assessing antimicrobial susceptibility of Pediococcus isolates. We report the finding of Vancomycin-susceptible Pediococcus isolates from four species. Interestingly, we found that hop-resistant, beer-spoilage, and beer-spoilage gene-harbouring isolates had a tendency to be more susceptible, rather than more resistant, to antimicrobial compounds. Conclusion Our findings indicate that the mechanisms involved in conferring hop-resistance or ability to spoil beer by Pediococcus isolates are not associated with resistance to antibiotics commonly used for treatment of human infections. Also, Vancomycin-resistance was found to be isolate-specific and not intrinsic to the genus as previously believed.

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

Reference15 articles.

1. Simpson WJ: Ionophoric action of trans-isohumulone of Lactobacillus brevis. J Gen Microbiol. 1993, 139: 1041-1045.

2. Sami M, Yamashita H, Hirono T, Kadokura H, Kitamoto K, Yoda K, Yamasaki M: Hop-resistant Lactobacillus brevis contains a novel plasmid harboring a multidrug resistance-like gene. J Ferment Bioeng. 1997, 84: 1-6. 10.1016/S0922-338X(97)82778-X.

3. Haakensen M, Schubert A, Ziola B: Multiplex PCR for putative Lactobacillus and Pediococcus beer-spoilage genes and ability of gene presence to predict growth in beer. J Am Soc Brew Chem. 2008, 66 (2): 63-70.

4. Haakensen MC, Butt L, Chaban B, Deneer H, Ziola B, Dowgiert T: A horA-specific real-time PCR for detection of beer-spoilage lactic acid bacteria. J Am Soc Brew Chem. 2007, 65 (3): 157-165.

5. Haakensen M, Shubert A, Ziola B: Broth and agar hop-gradient plates used to evaluate the beer-spoilage potential of Lactobacillus and Pediococcus isolates. Int J Food Microbiol. 2009, 130 (1): 56-60. 10.1016/j.ijfoodmicro.2009.01.001.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3