Author:
Takanashi Naoya,Tomosada Yohsuke,Villena Julio,Murata Kozue,Takahashi Takuya,Chiba Eriko,Tohno Masanori,Shimazu Tomoyuki,Aso Hisashi,Suda Yoshihito,Ikegami Shuji,Itoh Hiroyuki,Kawai Yasushi,Saito Tadao,Alvarez Susana,Kitazawa Haruki
Abstract
Abstract
Background
Previously, a bovine intestinal epithelial cell line (BIE cells) was successfully established. This work hypothesized that BIE cells are useful in vitro model system for the study of interactions of microbial- or pathogen-associated molecular patterns (MAMPs or PAMPs) with bovine intestinal epithelial cells and for the selection of immunoregulatory lactic acid bacteria (LAB).
Results
All toll-like receptor (TLR) genes were expressed in BIE cells, being TLR4 one of the most strongly expressed. We demonstrated that heat-stable PAMPs of enterotoxigenic Escherichia coli (ETEC) significantly enhanced the production of IL-6, IL-8, IL-1α and MCP-1 in BIE cells by activating both NF-κB and MAPK pathways. We evaluated the capacity of several lactobacilli strains to modulate heat-stable ETEC PAMPs-mediated inflammatory response in BIE cells. Among these strains evaluated, Lactobacillus casei OLL2768 attenuated heat-stable ETEC PAMPs-induced pro-inflammatory response by inhibiting NF-κB and p38 signaling pathways in BIE cells. Moreover, L. casei OLL2768 negatively regulated TLR4 signaling in BIE cells by up-regulating Toll interacting protein (Tollip) and B-cell lymphoma 3-encoded protein (Bcl-3).
Conclusions
BIE cells are suitable for the selection of immunoregulatory LAB and for studying the mechanisms involved in the protective activity of immunobiotics against pathogen-induced inflammatory damage. In addition, we showed that L. casei OLL2768 functionally modulate the bovine intestinal epithelium by attenuating heat-stable ETEC PAMPs-induced inflammation. Therefore L. casei OLL2768 is a good candidate for in vivo studying the protective effect of LAB against intestinal inflammatory damage induced by ETEC infection or heat-stable ETEC PAMPs challenge in the bovine host.
Publisher
Springer Science and Business Media LLC
Subject
Microbiology (medical),Microbiology
Reference36 articles.
1. Foster DM, Smith GW: Pathophysiology of diarrhea in calves. Vet Clin North Am Food Anim Pract. 2009, 25: 13-36. 10.1016/j.cvfa.2008.10.013.
2. Zhou C, Liu Z, Jiang J, Yu Y, Zhang Q: Differential gene expression profiling of porcine epithelial cells infected with three enterotoxigenic Escherichia coli strains. BMC Genomics. 2012, 13: 330-10.1186/1471-2164-13-330.
3. Ondrackova P, Alexa P, Matiasovic P, Volf J, Faldyna M: Interaction of porcine neutrophils with different strains of enterotoxigenic Escherichia coli. Vet Microbiol. 2012, 60: 108-116.
4. Geens MM, Niewold TA: Preliminary characterization of the transcriptional response of the porcine intestinal cell line IPEC-J2 to Enterotoxigenic Escherichia coli, Escherichia coli, and E. coli lipopolysaccharide. Comp Funct Genomics. 2010, 469583:
5. Berkes J, Viswanathan VK, Savkovic SD, Hecht G: Intestinal epithelial responses to enteric pathogens: effects on the tight junction barrier, ion transport, and inflammation. Gut. 2003, 52: 439-451. 10.1136/gut.52.3.439.