Expression capable library for studies of Neisseria gonorrhoeae, version 1.0

Author:

Brettin Thomas,Altherr Michael R,Du Ying,Mason Roxie M,Friedrich Alexandra,Potter Laura,Langford Chris,Keller Thomas J,Jens Jason,Howie Heather,Weyand Nathan J,Clary Susan,Prichard Kimberly,Wachocki Susi,Sodergren Erica,Dillard Joseph P,Weinstock George,So Magdalene,Arvidson Cindy Grove

Abstract

Abstract Background The sexually transmitted disease, gonorrhea, is a serious health problem in developed as well as in developing countries, for which treatment continues to be a challenge. The recent completion of the genome sequence of the causative agent, Neisseria gonorrhoeae, opens up an entirely new set of approaches for studying this organism and the diseases it causes. Here, we describe the initial phases of the construction of an expression-capable clone set representing the protein-coding ORFs of the gonococcal genome using a recombination-based cloning system. Results The clone set thus far includes 1672 of the 2250 predicted ORFs of the N. gonorrhoeae genome, of which 1393 (83%) are sequence-validated. Included in this set are 48 of the 61 ORFs of the gonococcal genetic island of strain MS11, not present in the sequenced genome of strain FA1090. L-arabinose-inducible glutathione-S-transferase (GST)-fusions were constructed from random clones and each was shown to express a fusion protein of the predicted size following induction, demonstrating the use of the recombination cloning system. PCR amplicons of each ORF used in the cloning reactions were spotted onto glass slides to produce DNA microarrays representing 2035 genes of the gonococcal genome. Pilot experiments indicate that these arrays are suitable for the analysis of global gene expression in gonococci. Conclusion This archived set of Gateway® entry clones will facilitate high-throughput genomic and proteomic studies of gonococcal genes using a variety of expression and analysis systems. In addition, the DNA arrays produced will allow us to generate gene expression profiles of gonococci grown in a wide variety of conditions. Together, the resources produced in this work will facilitate experiments to dissect the molecular mechanisms of gonococcal pathogenesis on a global scale, and ultimately lead to the determination of the functions of unknown genes in the genome.

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

Reference66 articles.

1. Centers for Disease Control and Prevention.http://www.cdc.gov

2. World Health Organization.http://www.who.org

3. Fox KK, Knapp JS, Holmes KK, Hook EW, Judson FN, Thompson SE, Washington JA, Whittington WL: Antimicrobial resistance in Neisseria gonorrhoeae in the United States, 1988-1994: the emergence ofdecreased susceptibility to the fluoroquinolones. J Infect Dis. 1997, 175: 1396-1403.

4. Shlaes D, Levy S, Archer G: Antimicrobial resistance: new directions. ASM News. 1991, 57: 455-458.

5. Schneider H, Hale TL, Zollinger WD, Seid RCJ, Hammack CA, Griffiss JM: Does an experimental gonococcal infection protect human volunteers from subsequent reinfection?. Abst Tenth Intnl Path Neisseria Conf. 1996, 10: 13-

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3