Multiple factors interact to produce responses resembling spectrum of human disease in Campylobacter jejuni infected C57BL/6 IL-10-/- mice

Author:

Bell Julia A,St Charles Jessica L,Murphy Alice J,Rathinam Vijay AK,Plovanich-Jones Anne E,Stanley Erin L,Wolf John E,Gettings Jenna R,Whittam Thomas S,Mansfield Linda S

Abstract

Abstract Background Campylobacter jejuni infection produces a spectrum of clinical presentations in humans – including asymptomatic carriage, watery diarrhea, and bloody diarrhea – and has been epidemiologically associated with subsequent autoimmune neuropathies. This microorganism is genetically variable and possesses genetic mechanisms that may contribute to variability in nature. However, relationships between genetic variation in the pathogen and variation in disease manifestation in the host are not understood. We took a comparative experimental approach to explore differences among different C. jejuni strains and studied the effect of diet on disease manifestation in an interleukin-10 deficient mouse model. Results In the comparative study, C57BL/6 interleukin-10-/- mice were infected with seven genetically distinct C. jejuni strains. Four strains colonized the mice and caused disease; one colonized with no disease; two did not colonize. A DNA:DNA microarray comparison of the strain that colonized mice without disease to C. jejuni 11168 that caused disease revealed that putative virulence determinants, including loci encoding surface structures known to be involved in C. jejuni pathogenesis, differed from or were absent in the strain that did not cause disease. In the experimental study, the five colonizing strains were passaged four times in mice. For three strains, serial passage produced increased incidence and degree of pathology and decreased time to develop pathology; disease shifted from watery to bloody diarrhea. Mice kept on an ~6% fat diet or switched from an ~12% fat diet to an ~6% fat diet just before infection with a non-adapted strain also exhibited increased incidence and severity of disease and decreased time to develop disease, although the effects of diet were only statistically significant in one experiment. Conclusion C. jejuni strain genetic background and adaptation of the strain to the host by serial passage contribute to differences in disease manifestations of C. jejuni infection in C57BL/6 IL-10-/- mice; differences in environmental factors such as diet may also affect disease manifestation. These results in mice reflect the spectrum of clinical presentations of C. jejuni gastroenteritis in humans and contribute to usefulness of the model in studying human disease.

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

Reference73 articles.

1. Mansfield LS, Schauer DB, Fox JG: Chapter 21: Animal models of Campylobacter jejuni infections. Campylobacter. Edited by: Nachamkin I, Szymanski CM, Blaser MJ. 2008, Washington, D.C.: American Society for Microbiology Press, 1: 376-379. 3

2. Young VB, Mansfield LS: Campylobacter Infection – Clinical Context. Campylobacter: Molecular and Cellular Biology. Edited by: Ketley JM, Konkel ME. 2005, Wymondham, Norfolk, UK: Horizon Bioscience, 1-12.

3. Young V, Schauer D, Fox J: Animal models of Campylobacter infection. Campylobacter. Edited by: Nachamkin I, Blazer M. 2000, Washington, DC: ASM Press, 287-301. 2

4. Rakoff-Nahoum S, Medzhitov R: Role of the innate immune system and host-commensal mutualism. Curr Topics Microbiol Immunol. 2006, 308: 1-18.

5. Hooper L, Midtvedt T, Gordon J: How host-microbial interactions shape the nutrient environment of the mammalian intestine. Ann Rev Nutr. 2002, 22: 283-307.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3