Selecting representative model micro-organisms

Author:

Holland BR,Schmid J

Abstract

Abstract Background Micro-biological research relies on the use of model organisms that act as representatives of their species or subspecies, these are frequently well-characterized laboratory strains. However, it has often become apparent that the model strain initially chosen does not represent important features of the species. For micro-organisms, the diversity of their genomes is such that even the best possible choice of initial strain for sequencing may not assure that the genome obtained adequately represents the species. To acquire information about a species' genome as efficiently as possible, we require a method to choose strains for analysis on the basis of how well they represent the species. Results We develop the Best Total Coverage (BTC) method for selecting one or more representative model organisms from a group of interest, given that rough genetic distances between the members of the group are known. Software implementing a "greedy" version of the method can be used with large data sets, its effectiveness is tested using both constructed and biological data sets. Conclusion In both the simulated and biological examples the greedy-BTC method outperformed random selection of model organisms, and for two biological examples it outperformed selection of model strains based on phylogenetic structure. Although the method was designed with microbial species in mind, and is tested here on three microbial data sets, it will also be applicable to other types of organism.

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3