Bacterial diversity at different stages of the composting process

Author:

Partanen Pasi,Hultman Jenni,Paulin Lars,Auvinen Petri,Romantschuk Martin

Abstract

Abstract Background Composting is an aerobic microbiological process that is facilitated by bacteria and fungi. Composting is also a method to produce fertilizer or soil conditioner. Tightened EU legislation now requires treatment of the continuously growing quantities of organic municipal waste before final disposal. However, some full-scale composting plants experience difficulties with the efficiency of biowaste degradation and with the emission of noxious odours. In this study we examine the bacterial species richness and community structure of an optimally working pilot-scale compost plant, as well as a full-scale composting plant experiencing typical problems. Bacterial species composition was determined by isolating total DNA followed by amplifying and sequencing the gene encoding the 16S ribosomal RNA. Results Over 1500 almost full-length 16S rRNA gene sequences were analysed and of these, over 500 were present only as singletons. Most of the sequences observed in either one or both of the composting processes studied here were similar to the bacterial species reported earlier in composts, including bacteria from the phyla Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria and Deinococcus-Thermus. In addition, a number of previously undetected bacterial phylotypes were observed. Statistical calculations estimated a total bacterial diversity of over 2000 different phylotypes in the studied composts. Conclusions Interestingly, locally enriched or evolved bacterial variants of familiar compost species were observed in both composts. A detailed comparison of the bacterial diversity revealed a large difference in composts at the species and strain level from the different composting plants. However, at the genus level, the difference was much smaller and illustrated a delay of the composting process in the full-scale, sub-optimally performing plants.

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

Reference53 articles.

1. Epstein E: The science of composting. 1997, Lancaster: Technomic Publishing Company

2. Sundberg C, Smårs S, Jönsson H: Low pH as an inhibiting factor in the transition from mesophilic to thermophilic phase in composting. Bioresource technol. 2004, 95 (2): 145-150. 10.1016/j.biortech.2004.01.016.

3. Romantschuk M, Arnold M, Kontro M, Kurola J, Vasara T: Älykäs kompostointi - prosessinohjaus ja hajunmuodostuksen hallinta (BIOTEHOII). STREAMS final report 2005. Edited by: Silvennoinen A. 2005, Helsinki, Finland: TEKES, 1: 224-239. 1

4. Romantschuk M, Itävaara M, Hänninen K, Arnold M: Biojätteen kompostoinnin tehostaminen ja ympäristöhaittojen eliminointi - TEHOKOMP./Enhancement of biowaste composting and elimination of environmental nuisance. STREAMS final report 2005. Edited by: Silvennoinen A. 2005, Helsinki, Finland: Tekes, 1: 137-168. 1

5. Gray KR, Sherman K, Biddlestone AJ: A Review of composting - Part 1. Process Biochem. 1971, 6: 32-36.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3