Identification and characterization of domains responsible for self-assembly and cell wall binding of the surface layer protein of Lactobacillus brevisATCC 8287

Author:

Åvall-Jääskeläinen Silja,Hynönen Ulla,Ilk Nicola,Pum Dietmar,Sleytr Uwe B,Palva Airi

Abstract

Abstract Background Lactobacillus brevis ATCC 8287 is covered by a regular surface (S-) layer consisting of a 435 amino acid protein SlpA. This protein is completely unrelated in sequence to the previously characterized S-layer proteins of Lactobacillus acidophilus group. Results In this work, the self-assembly and cell wall binding domains of SlpA were characterized. The C-terminal self-assembly domain encompassed residues 179–435 of mature SlpA, as demonstrated by the ability of N-terminally truncated recombinant SlpA to form a periodic structure indistinguishable from that formed by full length SlpA. Furthermore, a trypsin degradation analysis indicated the existence of a protease resistant C-terminal domain of 214 amino acids. By producing a set of C-terminally truncated recombinant SlpA (rSlpA) proteins the cell wall binding region was mapped to the N-terminal part of SlpA, where the first 145 amino acids of mature SlpA alone were sufficient for binding to isolated cell wall fragments of L. brevis ATCC 8287. The binding of full length rSlpA to the cell walls was not affected by the treatment of the walls with 5% trichloroacetic acid (TCA), indicating that cell wall structures other than teichoic acids are involved, a feature not shared by the Lactobacillus acidophilus group S-layer proteins characterized so far. Conserved carbohydrate binding motifs were identified in the positively charged N-terminal regions of six Lactobacillus brevis S-layer proteins. Conclusion This study identifies SlpA as a two-domain protein in which the order of the functional domains is reversed compared to other characterized Lactobacillus S-layer proteins, and emphasizes the diversity of potential cell wall receptors despite similar carbohydrate binding sequence motifs in Lactobacillus S-layer proteins.

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3