Author:
Terilli Rebecca R,Moura Hercules,Woolfitt Adrian R,Rees Jon,Schieltz David M,Barr John R
Abstract
Abstract
Background
Clostridium botulinum is the taxonomic designation for at least six diverse species that produce botulinum neurotoxins (BoNTs). There are seven known serotypes of BoNTs (/A through/G), all of which are potent toxins classified as category A bioterrorism agents. BoNT/G is the least studied of the seven serotypes. In an effort to further characterize the holotoxin and neurotoxin-associated proteins (NAPs), we conducted an in silico and proteomic analysis of commercial BoNT/G complex. We describe the relative quantification of the proteins present in the/G complex and confirm our ability to detect the toxin activity in vitro. In addition, we review previous literature to provide a complete description of the BoNT/G complex.
Results
An in-depth comparison of protein sequences indicated that BoNT/G shares the most sequence similarity with the/B serotype. A temperature-modified Endopep-MS activity assay was successful in the detection of BoNT/G activity. Gel electrophoresis and in gel digestions, followed by MS/MS analysis of/G complex, revealed the presence of four proteins in the complexes: neurotoxin (BoNT) and three NAPs--nontoxic-nonhemagglutinin (NTNH) and two hemagglutinins (HA70 and HA17). Rapid high-temperature in-solution tryptic digestions, coupled with MS/MS analysis, generated higher than previously reported sequence coverages for all proteins associated with the complex: BoNT 66%, NTNH 57%, HA70 91%, and HA17 99%. Label-free relative quantification determined that the complex contains 30% BoNT, 38% NTNH, 28% HA70, and 4% HA17 by weight comparison and 17% BoNT, 23% NTNH, 42% HA70, and 17% HA17 by molecular comparison.
Conclusions
The in silico protein sequence comparisons established that the/G complex is phenetically related to the other six serotypes of C. botulinum. Proteomic analyses and Endopep-MS confirmed the presence of BoNT and NAPs, along with the activity of the commercial/G complex. The use of data-independent MSE data analysis, coupled to label-free quantification software, suggested that the weight ratio BoNT:NAPs is 1:3, whereas the molar ratio of BoNT:NTNH:HA70:HA17 is 1:1:2:1, within the BoNT/G progenitor toxin.
Publisher
Springer Science and Business Media LLC
Subject
Microbiology (medical),Microbiology
Reference32 articles.
1. Hill K, Xie G, Foley B, Smith T, Munk A, Bruce D, Smith L, Brettin T, Detter J: Recombination and insertion events involving the botulinum neurotoxin complex genes in Clostridium botulinum types A, B, E and F and Clostridium butyricum type E strains. BMC Biology. 2009, 7: 66-10.1186/1741-7007-7-66.
2. Arnon SS, Schechter R, Inglesby TV, Henderson DA, Bartlett JG, Ascher MS, Eitzen E, Fine AD, Hauer J, Layton M, et al: Botulinum toxin as a biological weapon: medical and public health management. JAMA. 2001, 285: 1059-1070. 10.1001/jama.285.8.1059.
3. Smith LD: Botulism: The Organism, It's Toxins, The Disease. 1977, Springfield: Charles C Thomas
4. Gimenez DF, Ciccarelli AS: Another type of Clostridium botulinum. Zentralbl Bakteriol Orig. 1970, 215: 221-224.
5. Suen JC: Clostridium argentinese sp. nov.: a Genetically Homogeneous Group Composed of All Strains of Clostridium botulinum Toxin Type G and Some Nontoxigenic Strains Previously indentified as Clostridium subterminale or Clostridium hastiforme. Int J Syst Bacteriol. 1988, 38: 375-381. 10.1099/00207713-38-4-375.
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献