Author:
Zhang Junqi,Qian Lisheng,Wu Yang,Cai Xia,Li Xueping,Cheng Xunjia,Qu Di
Abstract
Abstract
Background
Shigella is a major pathogen responsible for bacillary dysentery, a severe form of shigellosis. Severity of the disease depends on the virulence of the infecting strain. Shigella pathogenicity is a multi-gene phenomenon, involving the participation of genes on an unstable large virulence plasmid and chromosomal pathogenicity islands.
Results
A multiplex PCR (mPCR) assay was developed to detect S. flexneri 2a from rural regions of Zhengding (Hebei Province, China). We isolated and tested 86 strains using our mPCR assay, which targeted the ipaH, ial and set1B genes. A clinical strain of S. flexneri 2a 51 (SF51) containing ipaH and ial, but lacking set1B was found. The virulence of this strain was found to be markedly decreased. Further testing showed that the SF51 strain lacked pic. To investigate the role of pic in S. flexneri 2a infections, a pic knockout mutant (SF301-∆ pic) and two complementation strains, SF301-∆ pic/pPic and SF51/pPic, were created. Differences in virulence for SF51, SF301-∆ pic, SF301-∆ pic/pPic, SF51/pPic and S. flexneri 2a 301 (SF301) were compared. Compared with SF301, both SF51 and SF301-∆ pic exhibited lower levels of Hela cell invasion and resulted in reduced keratoconjunctivitis, with low levels of tissue damage seen in murine eye sections. The virulence of SF301-∆ pic and SF51 was partially recovered in vitro and in vivo through the addition of a complementary pic gene.
Conclusions
The pic gene appears to be involved in an increase in pathogenicity of S. flexneri 2a. This gene assists with bacterial invasion into host cells and alters inflammatory reactions.
Publisher
Springer Science and Business Media LLC
Subject
Microbiology (medical),Microbiology
Reference47 articles.
1. Kotloff KL, Winickoff JP, Ivanoff B, Clemens JD, Swerdlow DL, Sansonetti PJ, Adak GK, Levine MM: Global burden of Shigella infections: implications for vaccine development and implementation of control strategies. Bull World Health Organ. 1999, 77 (8): 651-666.
2. Wang XY, Tao F, Xiao D, Lee H, Deen J, Gong J, Zhao Y, Zhou W, Li W, Shen B, et al: Trend and disease burden of bacillary dysentery in China (1991–2000). Bull World Health Organ. 2006, 84 (7): 561-568. 10.2471/BLT.05.023853.
3. Melito PL, Woodward DL, Munro J, Walsh J, Foster R, Tilley P, Paccagnella A, Isaac-Renton J, Ismail J, Ng LK: A novel Shigella dysenteriae serovar isolated in Canada. J Clin Microbiol. 2005, 43 (2): 740-744. 10.1128/JCM.43.2.740-744.2005.
4. Schroeder GN, Hilbi H: Molecular pathogenesis of Shigella spp.: controlling host cell signaling, invasion, and death by type III secretion. Clin Microbiol Rev. 2008, 21 (1): 134-156. 10.1128/CMR.00032-07.
5. Thong KL, Hoe SL, Puthucheary SD, Yasin RM: Detection of virulence genes in Malaysian Shigella species by multiplex PCR assay. BMC Infect Dis. 2005, 5: 8-10.1186/1471-2334-5-8.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献