Author:
Hansen Bjarne G,Genee Hans J,Kaas Christian S,Nielsen Jakob B,Regueira Torsten B,Mortensen Uffe H,Frisvad Jens C,Patil Kiran R
Abstract
Abstract
Background
Many secondary metabolites produced by filamentous fungi have potent biological activities, to which the producer organism must be resistant. An example of pharmaceutical interest is mycophenolic acid (MPA), an immunosuppressant molecule produced by several Penicillium species. The target of MPA is inosine-5'-monophosphate dehydrogenase (IMPDH), which catalyses the rate limiting step in the synthesis of guanine nucleotides. The recent discovery of the MPA biosynthetic gene cluster from Penicillium brevicompactum revealed an extra copy of the IMPDH-encoding gene (mpaF) embedded within the cluster. This finding suggests that the key component of MPA self resistance is likely based on the IMPDH encoded by mpaF.
Results
In accordance with our hypothesis, heterologous expression of mpaF dramatically increased MPA resistance in a model fungus, Aspergillus nidulans, which does not produce MPA. The growth of an A. nidulans strain expressing mpaF was only marginally affected by MPA at concentrations as high as 200 μg/ml. To further substantiate the role of mpaF in MPA resistance, we searched for mpaF orthologs in six MPA producer/non-producer strains from Penicillium subgenus Penicillium. All six strains were found to hold two copies of IMPDH. A cladistic analysis based on the corresponding cDNA sequences revealed a novel group constituting mpaF homologs. Interestingly, a conserved tyrosine residue in the original class of IMPDHs is replaced by a phenylalanine residue in the new IMPDH class.
Conclusions
We identified a novel variant of the IMPDH-encoding gene in six different strains from Penicillium subgenus Penicillium. The novel IMPDH variant from MPA producer P. brevicompactum was shown to confer a high degree of MPA resistance when expressed in a non-producer fungus. Our study provides a basis for understanding the molecular mechanism of MPA resistance and has relevance for biotechnological and pharmaceutical applications.
Publisher
Springer Science and Business Media LLC
Subject
Microbiology (medical),Microbiology
Reference25 articles.
1. Hedstrom L: IMP dehydrogenase: structure, mechanism, and inhibition. Chemical reviews. 2009, 109: 2903-28. 10.1021/cr900021w.
2. Weber G, Nakamura H, Natsumeda Y, Szekeres T, Nagai M: Regulation of GTP biosynthesis. Advances in enzyme regulation. 1992, 32: 57-69.
3. Frisvad JC, Smedsgaard JR, Larsen TO, Samson RA: Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. Stud Mycol. 2004, 49: 201-41.
4. Demain AL: How do antibiotic-producing microorganisms avoid suicide?. Annals of the New York Academy of Sciences. 1974, 235: 601-12. 10.1111/j.1749-6632.1974.tb43294.x.
5. Hopwood DA: How do antibiotic-producing bacteria ensure their self-resistance before antibiotic biosynthesis incapacitates them?. Molecular microbiology. 2007, 63: 937-40. 10.1111/j.1365-2958.2006.05584.x.
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献