A defined medium to investigate sliding motility in a Bacillus subtilis flagella-less mutant

Author:

Fall Ray,Kearns Daniel B,Nguyen Tam

Abstract

Abstract Background We have recently shown that undomesticated strains of Bacillus subtilis can extensively colonize the surfaces of rich, semi-solid media, by a flagellum-independent mechanism and suggested that sliding motility is responsible for surface migration. Here we have used a flagella-less hag null mutant to examine and confirm sliding motility. Results Using a defined semi-solid medium we determined that a B. subtilis hag mutant colonized the surface in two stages, first as tendril-like clusters of cells followed by a profuse pellicle-like film. We determined the levels of macro- and micro-nutrients required for the tendril-to-film transition. Sufficient levels of each of the macronutrients, glycerol, Na-glutamate, and Na-phosphate, and inorganic nutrients, K+, Mg2+, Fe2+ and Mn2+, were required for robust film formation. The K+ requirement was quantified in more detail, and the thresholds for complete tendril coverage (50 μM KCl) or film coverage (2–3 mM KCl) were determined. In addition, disruption of the genes for the higher affinity K+ transporter (KtrAB), but not the lower affinity K+ transporter (KtrCD), strongly inhibited the formation of both tendrils and films, and could be partially overcome by high levels of KCl. Examination of hag tendrils by confocal scanning laser microscopy revealed that tendrils are multicellular structures, but that the cells are not as highly organized as cells in wild-type B. subtilis pellicles. Conclusion These results suggest that B. subtilis can use sliding motility to colonize surfaces, using a tendril-like growth mode when various macronutrients or micronutrients are limiting. If nutrients are balanced and sufficient, the surfaces between tendrils can be colonized by robust surface films. Sliding motility may represent a strategy for nutrient-deprived cells to colonize surfaces in natural environments, such as plant roots, and the media described here may be useful in investigations of this growth phenotype.

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3