Expressed sequence tags from the oomycete fish pathogen Saprolegnia parasitica reveal putative virulence factors

Author:

Torto-Alalibo Trudy,Tian Miaoying,Gajendran Kamal,Waugh Mark E,van West Pieter,Kamoun Sophien

Abstract

Abstract Background The oomycete Saprolegnia parasitica is one of the most economically important fish pathogens. There is a dramatic recrudescence of Saprolegnia infections in aquaculture since the use of the toxic organic dye malachite green was banned in 2002. Little is known about the molecular mechanisms underlying pathogenicity in S. parasitica and other animal pathogenic oomycetes. In this study we used a genomics approach to gain a first insight into the transcriptome of S. parasitica. Results We generated 1510 expressed sequence tags (ESTs) from a mycelial cDNA library of S. parasitica. A total of 1279 consensus sequences corresponding to 525944 base pairs were assembled. About half of the unigenes showed similarities to known protein sequences or motifs. The S. parasitica sequences tended to be relatively divergent from Phytophthora sequences. Based on the sequence alignments of 18 conserved proteins, the average amino acid identity between S. parasitica and three Phytophthora species was 77% compared to 93% within Phytophthora. Several S. parasitica cDNAs, such as those with similarity to fungal type I cellulose binding domain proteins, PAN/Apple module proteins, glycosyl hydrolases, proteases, as well as serine and cysteine protease inhibitors, were predicted to encode secreted proteins that could function in virulence. Some of these cDNAs were more similar to fungal proteins than to other eukaryotic proteins confirming that oomycetes and fungi share some virulence components despite their evolutionary distance Conclusion We provide a first glimpse into the gene content of S. parasitica, a reemerging oomycete fish pathogen. These resources will greatly accelerate research on this important pathogen. The data is available online through the Oomycete Genomics Database [1].

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

Reference100 articles.

1. Oomycete Genomics Database (OGD).http://www.oomycete.org

2. Neish GA, Hughes GC: Fungal diseases of fishes, Book 6. 1980, Neptune, New Jersey, USA, T.W.F. Publications

3. Willoughby LG, Pickering AD: Viable Saprolegniaceae spores on the epidermis of the salmonid fish Salmo trutta and Salmo alpinus. Trans Br Mycol Soc. 1977, 68: 91-95.

4. Bly JE, Lawson LA, Abdel-Aziz ES, Clem LW: Channel catfish, Ictalurus punctatus, immunity to Saprolegnia sp. J Appl Aquacult. 1994, 3: 35-50.

5. Hatai K, Hoshiai GI: Pathogenicity of Saprolegnia parasitica Coker. Salmon Saprolegniasis. Edited by: Mueller GJ. 1994, Portland, Oregon, U.S. Department of Energy, Bonneville Power Administration, 87-98.

Cited by 87 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3