The non-pathogenic Escherichia coli strain W secretes SslE via the virulence-associated type II secretion system beta

Author:

DeCanio Mark S,Landick Robert,Haft Rembrandt J F

Abstract

Abstract Background Many pathogenic E. coli strains secrete virulence factors using type II secretory systems, homologs of which are widespread in Gram-negative bacteria. Recently, the enteropathogenic Escherichia coli strain E2348/69 was shown to secrete and surface-anchor SslE, a biofilm-promoting virulence factor, via a type II secretion system. Genes encoding SslE and its associated secretion system are conserved in some non-pathogenic E. coli, including the commonly-used W (Waksman) strain. Results We report here that E. coli W uses its type II secretion system to export a cognate SslE protein. SslE secretion is temperature- and nutrient-dependent, being robust at 37°C in rich medium but strongly repressed by lower temperatures or nutrient limitation. Fusing either of two glycosyl hydrolases to the C-terminus of SslE prevented it from being secreted or surface-exposed. We screened mutations that inactivated the type II secretion system for stress-related phenotypes and found that inactivation of the secretion system conferred a modest increase in tolerance to high concentrations of urea. Additionally, we note that the genes encoding this secretion system are present at a hypervariable locus and have been independently lost or gained in different lineages of E. coli. Conclusions The non-pathogenic E. coli W strain shares the extracellular virulence factor SslE, and its associated secretory system, with pathogenic E. coli strains. The pattern of regulation of SslE secretion we observed suggests that SslE plays a role in colonization of mammalian hosts by non-pathogenic as well as pathogenic E. coli. Our work provides a non-pathogenic model system for the study of SslE secretion, and informs future research into the function of SslE during host colonization.

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3