Oxygen limitation modulates pH regulation of catabolism and hydrogenases, multidrug transporters, and envelope composition in Escherichia coli K-12

Author:

Hayes Everett T,Wilks Jessica C,Sanfilippo Piero,Yohannes Elizabeth,Tate Daniel P,Jones Brian D,Radmacher Michael D,BonDurant Sandra S,Slonczewski Joan L

Abstract

Abstract Background In Escherichia coli, pH regulates genes for amino-acid and sugar catabolism, electron transport, oxidative stress, periplasmic and envelope proteins. Many pH-dependent genes are co-regulated by anaerobiosis, but the overall intersection of pH stress and oxygen limitation has not been investigated. Results The pH dependence of gene expression was analyzed in oxygen-limited cultures of E. coli K-12 strain W3110. E. coli K-12 strain W3110 was cultured in closed tubes containing LBK broth buffered at pH 5.7, pH 7.0, and pH 8.5. Affymetrix array hybridization revealed pH-dependent expression of 1,384 genes and 610 intergenic regions. A core group of 251 genes showed pH responses similar to those in a previous study of cultures grown with aeration. The highly acid-induced gene yagU was shown to be required for extreme-acid resistance (survival at pH 2). Acid also up-regulated fimbriae (fimAC), periplasmic chaperones (hdeAB), cyclopropane fatty acid synthase (cfa), and the "constitutive" Na+/H+ antiporter (nhaB). Base up-regulated core genes for maltodextrin transport (lamB, mal), ATP synthase (atp), and DNA repair (recA, mutL). Other genes showed opposite pH responses with or without aeration, for example ETS components (cyo,nuo, sdh) and hydrogenases (hya, hyb, hyc, hyf, hyp). A hypF strain lacking all hydrogenase activity showed loss of extreme-acid resistance. Under oxygen limitation only, acid down-regulated ribosome synthesis (rpl,rpm, rps). Acid up-regulated the catabolism of sugar derivatives whose fermentation minimized acid production (gnd, gnt, srl), and also a cluster of 13 genes in the gadA region. Acid up-regulated drug transporters (mdtEF, mdtL), but down-regulated penicillin-binding proteins (dacACD, mreBC). Intergenic regions containing regulatory sRNAs were up-regulated by acid (ryeA, csrB, gadY, rybC). Conclusion pH regulates a core set of genes independently of oxygen, including yagU, fimbriae, periplasmic chaperones, and nhaB. Under oxygen limitation, however, pH regulation is reversed for genes encoding electron transport components and hydrogenases. Extreme-acid resistance requires yagU and hydrogenase production. Ribosome synthesis is down-regulated at low pH under oxygen limitation, possibly due to the restricted energy yield of catabolism. Under oxygen limitation, pH regulates metabolism and transport so as to maximize alternative catabolic options while minimizing acidification or alkalinization of the cytoplasm.

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

Cited by 118 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3