Author:
Hayes Everett T,Wilks Jessica C,Sanfilippo Piero,Yohannes Elizabeth,Tate Daniel P,Jones Brian D,Radmacher Michael D,BonDurant Sandra S,Slonczewski Joan L
Abstract
Abstract
Background
In Escherichia coli, pH regulates genes for amino-acid and sugar catabolism, electron transport, oxidative stress, periplasmic and envelope proteins. Many pH-dependent genes are co-regulated by anaerobiosis, but the overall intersection of pH stress and oxygen limitation has not been investigated.
Results
The pH dependence of gene expression was analyzed in oxygen-limited cultures of E. coli K-12 strain W3110. E. coli K-12 strain W3110 was cultured in closed tubes containing LBK broth buffered at pH 5.7, pH 7.0, and pH 8.5. Affymetrix array hybridization revealed pH-dependent expression of 1,384 genes and 610 intergenic regions. A core group of 251 genes showed pH responses similar to those in a previous study of cultures grown with aeration. The highly acid-induced gene yagU was shown to be required for extreme-acid resistance (survival at pH 2). Acid also up-regulated fimbriae (fimAC), periplasmic chaperones (hdeAB), cyclopropane fatty acid synthase (cfa), and the "constitutive" Na+/H+ antiporter (nhaB). Base up-regulated core genes for maltodextrin transport (lamB, mal), ATP synthase (atp), and DNA repair (recA, mutL). Other genes showed opposite pH responses with or without aeration, for example ETS components (cyo,nuo, sdh) and hydrogenases (hya, hyb, hyc, hyf, hyp). A hypF strain lacking all hydrogenase activity showed loss of extreme-acid resistance. Under oxygen limitation only, acid down-regulated ribosome synthesis (rpl,rpm, rps). Acid up-regulated the catabolism of sugar derivatives whose fermentation minimized acid production (gnd, gnt, srl), and also a cluster of 13 genes in the gadA region. Acid up-regulated drug transporters (mdtEF, mdtL), but down-regulated penicillin-binding proteins (dacACD, mreBC). Intergenic regions containing regulatory sRNAs were up-regulated by acid (ryeA, csrB, gadY, rybC).
Conclusion
pH regulates a core set of genes independently of oxygen, including yagU, fimbriae, periplasmic chaperones, and nhaB. Under oxygen limitation, however, pH regulation is reversed for genes encoding electron transport components and hydrogenases. Extreme-acid resistance requires yagU and hydrogenase production. Ribosome synthesis is down-regulated at low pH under oxygen limitation, possibly due to the restricted energy yield of catabolism. Under oxygen limitation, pH regulates metabolism and transport so as to maximize alternative catabolic options while minimizing acidification or alkalinization of the cytoplasm.
Publisher
Springer Science and Business Media LLC
Subject
Microbiology (medical),Microbiology
Reference99 articles.
1. Foster JW: Escherichia coli acid resistance: tales of an amateur acidophile. Nature Reviews Microbiology. 2004, 2: 898-907. 10.1038/nrmicro1021.
2. Maurer LM, Yohannes E, BonDurant SS, Radmacher M, Slonczewski JL: pH regulates genes for flagellar motility, catabolism, and oxidative stress in Escherichia coli K-12. J Bacteriol. 2005, 187: 304-319. 10.1128/JB.187.1.304-319.2005.
3. Slonczewski JL, Foster JW: pH-regulated genes and survival at extreme pH. Escherichia coli and Salmonella: cellular and molecular biology. Edited by: Neidhardt, F C, III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE. 1996, Washington, DC , ASM Press, 1: 1539-1549. 2
4. Stancik LM, Stancik DM, Schimidt B, Barnhart DM, Yoncheva YN, Slonczewski. JL: pH-dependent expression of periplasmic proteins and amino acid catabolism in Escherichia coli. J Bacteriol. 2002, 184: 4246-4258. 10.1128/JB.184.15.4246-4258.2002.
5. Yohannes E, Barnhart DM, Slonczewski JL: pH-dependent catabolic protein expression during anaerobic growth of Escherichia coli K-12. J Bacteriol. 2004, 186: 192-199. 10.1128/JB.186.1.192-199.2004.