Arcanolysin is a cholesterol-dependent cytolysin of the human pathogen Arcanobacterium haemolyticum

Author:

Jost B Helen,Lucas Erynn A,Billington Stephen J,Ratner Adam J,McGee David J

Abstract

Abstract Background Arcanobacterium haemolyticum is an emerging human pathogen that causes pharyngitis, wound infections, and a variety of occasional invasive diseases. Since its initial discovery in 1946, this Gram positive organism has been known to have hemolytic activity, yet no hemolysin has been previously reported. A. haemolyticum also displays variable hemolytic activity on laboratory blood agar that is dependent upon which species the blood is derived. Results Here we describe a cholesterol-dependent cytolysin (CDC) secreted by A. haemolyticum, designated arcanolysin (aln), which is present in all strains (n = 52) tested by DNA dot hybridization. Among the known CDCs, ALN is most closely related to pyolysin (PLO) from Trueperella (formerly Arcanobacterium) pyogenes. The aln probe, however, did not hybridize to DNA from T. pyogenes. The aln open reading frame has a lower mol %G+C (46.7%) than the rest of the A. haemolyticum genome (53.1%) and is flanked by two tRNA genes, consistent with probable acquisition by horizontal transfer. The ALN protein (~ 64 kDa) contains a predicted signal sequence, a putative PEST sequence, and a variant undecapeptide within domain 4, which is typically important for function of the toxins. The gene encoding ALN was cloned and expressed in Escherichia coli as a functional recombinant toxin. Recombinant ALN had hemolytic activity on erythrocytes and cytolytic activity on cultured cells from human, rabbit, pig and horse origins but was poorly active on ovine, bovine, murine, and canine cells. ALN was less sensitive to inhibition by free cholesterol than perfringolysin O, consistent with the presence of the variant undecapeptide. Conclusions ALN is a newly identified CDC with hemolytic activity and unique properties in the CDC family and may be a virulence determinant for A. haemolyticum.

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3