Growth of Yersinia pseudotuberculosis in human plasma: impacts on virulence and metabolic gene expression

Author:

Rosso Marie-Laure,Chauvaux Sylvie,Dessein Rodrigue,Laurans Caroline,Frangeul Lionel,Lacroix Céline,Schiavo Angèle,Dillies Marie-Agnès,Foulon Jeannine,Coppée Jean-Yves,Médigue Claudine,Carniel Elisabeth,Simonet Michel,Marceau Michaël

Abstract

Abstract Background In man, infection by the Gram-negative enteropathogen Yersinia pseudotuberculosis is usually limited to the terminal ileum. However, in immunocompromised patients, the microorganism may disseminate from the digestive tract and thus cause a systemic infection with septicemia. Results To gain insight into the metabolic pathways and virulence factors expressed by the bacterium at the blood stage of pseudotuberculosis, we compared the overall gene transcription patterns (the transcriptome) of bacterial cells cultured in either human plasma or Luria-Bertani medium. The most marked plasma-triggered metabolic consequence in Y. pseudotuberculosis was the switch to high glucose consumption, which is reminiscent of the acetogenic pathway (known as "glucose overflow") in Escherichia coli. However, upregulation of the glyoxylate shunt enzymes suggests that (in contrast to E. coli) acetate may be further metabolized in Y. pseudotuberculosis. Our data also indicate that the bloodstream environment can regulate major virulence genes (positively or negatively); the yadA adhesin gene and most of the transcriptional units of the pYV-encoded type III secretion apparatus were found to be upregulated, whereas transcription of the pH6 antigen locus was strongly repressed. Conclusion Our results suggest that plasma growth of Y. pseudotuberculosis is responsible for major transcriptional regulatory events and prompts key metabolic reorientations within the bacterium, which may in turn have an impact on virulence.

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

Reference28 articles.

1. Vincent P, Leclerc A, Martin L, Yersinia Surveillance Network, Duez J-M, Simonet M, Carniel E: Sudden onset of pseudotuberculosis in humans, France, 2004–05. Emerg Infect Dis. 2008

2. Putzker M, Sauer H, Sobe D: Plague and other human infections caused by Yersinia species. Clin Lab. 2001, 47 (9–10): 453-466.

3. Marceau M: Transcriptional regulation in Yersinia: an update. Curr Issues Mol Biol. 2005, 7 (2): 151-177.

4. Darwin AJ: Genome-wide screens to identify genes of human pathogenic Yersinia species that are expressed during host infection. Curr Issues Mol Biol. 2005, 7 (2): 135-149.

5. Revell PA, Miller VL: Yersinia virulence: more than a plasmid. FEMS Microbiol Lett. 2001, 205 (2): 159-164. 10.1111/j.1574-6968.2001.tb10941.x.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3