Author:
Stock Alexandra,Edgcomb Virginia,Orsi William,Filker Sabine,Breiner Hans-Werner,Yakimov Michail M,Stoeck Thorsten
Abstract
Abstract
Background
Deep hypersaline anoxic basins (DHABs) are isolated habitats at the bottom of the eastern Mediterranean Sea, which originate from the ancient dissolution of Messinian evaporites. The different basins have recruited their original biota from the same source, but their geological evolution eventually constituted sharp environmental barriers, restricting genetic exchange between the individual basins. Therefore, DHABs are unique model systems to assess the effect of geological events and environmental conditions on the evolution and diversification of protistan plankton. Here, we examine evidence for isolated evolution of unicellular eukaryote protistan plankton communities driven by geological separation and environmental selection. We specifically focused on ciliated protists as a major component of protistan DHAB plankton by pyrosequencing the hypervariable V4 fragment of the small subunit ribosomal RNA. Geospatial distributions and responses of marine ciliates to differential hydrochemistries suggest strong physical and chemical barriers to dispersal that influence the evolution of this plankton group.
Results
Ciliate communities in the brines of four investigated DHABs are distinctively different from ciliate communities in the interfaces (haloclines) immediately above the brines. While the interface ciliate communities from different sites are relatively similar to each other, the brine ciliate communities are significantly different between sites. We found no distance-decay relationship, and canonical correspondence analyses identified oxygen and sodium as most important hydrochemical parameters explaining the partitioning of diversity between interface and brine ciliate communities. However, none of the analyzed hydrochemical parameters explained the significant differences between brine ciliate communities in different basins.
Conclusions
Our data indicate a frequent genetic exchange in the deep-sea water above the brines. The “isolated island character” of the different brines, that resulted from geological events and contemporary environmental conditions, create selective pressures driving evolutionary processes, and with time, lead to speciation and shape protistan community composition. We conclude that community assembly in DHABs is a mixture of isolated evolution (as evidenced by small changes in V4 primary structure in some taxa) and species sorting (as indicated by the regional absence/presence of individual taxon groups on high levels in taxonomic hierarchy).
Publisher
Springer Science and Business Media LLC
Subject
Microbiology (medical),Microbiology
Reference105 articles.
1. Ovreas L, Curtis TP: Microbial diversity and ecology. Biological Diversity: frontiers in measurement and assessment. Edited by: Magurran AE, McGill BJ. 2011, Oxford: Oxford University Press, 221-236.
2. Alexander E, Stock A, Breiner HW, Behnke A, Bunge J, Yakimov MM, Stoeck T: Microbial eukaryotes in the hypersaline anoxic L'Atalante deep-sea basin. Environ Microbiol. 2009, 11: 360-381. 10.1111/j.1462-2920.2008.01777.x.
3. Edgcomb V, Orsi W, Leslin C, Epstein S, Bunge J, Jeon SO, Yakimov MM, Behnke A, Stoeck T: Protistan community patterns within the brine and halocline of deep hypersaline anoxic basins in the eastern Mediterranean Sea. Extremophiles. 2009, 13: 151-167. 10.1007/s00792-008-0206-2.
4. Camerlenghi A: Anoxic basins of the eastern Mediterranean: geological framework. Mar Chem. 1990, 31: 1-19. 10.1016/0304-4203(90)90028-B.
5. La Cono V, Smedile F, Bortoluzzi G, Arcadi E, Maimone G, Messina E, Borghini M, Oliveri E, Mazzola S, L'Haridon S, et al.: Unveiling microbial life in new deep-sea hypersaline Lake Thetis. Part I: Prokaryotes and environmental settings. Environ Microbiol. 2011, 13 (8): 2250-2268. 10.1111/j.1462-2920.2011.02478.x.
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献