Author:
Korenblum Elisa,de Araujo Livia Vieira,Guimarães Carolina Reis,de Souza Lauro M,Sassaki Guilherme,Abreu Fernanda,Nitschke Márcia,Lins Ulysses,Freire Denise Maria Guimarães,Barreto-Bergter Eliana,Seldin Lucy
Abstract
Abstract
Background
Bacillus sp. H2O-1, isolated from the connate water of a Brazilian reservoir, produces an antimicrobial substance (denoted as AMS H2O-1) that is active against sulfate reducing bacteria, which are the major bacterial group responsible for biogenic souring and biocorrosion in petroleum reservoirs. Thus, the use of AMS H2O-1 for sulfate reducing bacteria control in the petroleum industry is a promising alternative to chemical biocides. However, prior to the large-scale production of AMS H2O-1 for industrial applications, its chemical structure must be elucidated. This study also analyzed the changes in the wetting properties of different surfaces conditioned with AMS H2O-1 and demonstrated the effect of AMS H2O-1 on sulfate reducing bacteria cells.
Results
A lipopeptide mixture from AMS H2O-1 was partially purified on a silica gel column and identified via mass spectrometry (ESI-MS). It comprises four major components that range in size from 1007 to 1049 Da. The lipid moiety contains linear and branched β-hydroxy fatty acids that range in length from C13 to C16. The peptide moiety contains seven amino acids identified as Glu-Leu-Leu-Val-Asp-Leu-Leu.
Transmission electron microscopy revealed cell membrane alteration of sulfate reducing bacteria after AMS H2O-1 treatment at the minimum inhibitory concentration (5 μg/ml). Cytoplasmic electron dense inclusions were observed in treated cells but not in untreated cells. AMS H2O-1 enhanced the osmosis of sulfate reducing bacteria cells and caused the leakage of the intracellular contents. In addition, contact angle measurements indicated that different surfaces conditioned by AMS H2O-1 were less hydrophobic and more electron-donor than untreated surfaces.
Conclusion
AMS H2O-1 is a mixture of four surfactin-like homologues, and its biocidal activity and surfactant properties suggest that this compound may be a good candidate for sulfate reducing bacteria control. Thus, it is a potential alternative to the chemical biocides or surface coating agents currently used to prevent SRB growth in petroleum industries.
Publisher
Springer Science and Business Media LLC
Subject
Microbiology (medical),Microbiology
Reference71 articles.
1. Muyzer G, Stams AJ: The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol. 2008, 6: 441-454.
2. Nemati M, Jenneman GE, Voordouw G: Mechanistic study of microbial control of hydrogen sulfide production in oil reservoirs. Biotechnol Bioeng. 2001, 74: 424-434. 10.1002/bit.1133.
3. Videla HA, Herrera LK: Microbiologically influenced corrosion: looking to the future. Int Microbiol. 2005, 8: 169-180.
4. Korenblum E, Valoni E, Penna M, Seldin L: Bacterial diversity in water injection systems of Brazilian offshore oil platforms. Appl Microbiol Biotechnol. 2010, 85: 791-800. 10.1007/s00253-009-2281-4.
5. Videla HA: Prevention and control of biocorrosion. Inter Biodeterd Biodegrad. 2001, 4: 259-270.
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献