Identification and properties of proteases from an Acanthamoeba isolate capable of producing granulomatous encephalitis

Author:

Sissons James,Alsam Selwa,Goldsworthy Graham,Lightfoot Mary,Jarroll Edward L,Khan Naveed Ahmed

Abstract

Abstract Background Granulomatous amoebic encephalitis due to Acanthamoeba is often a fatal human disease. However, the pathogenesis and pathophysiology of Acanthamoeba encephalitis remain unclear. In this study, the role of extracellular Acanthamoeba proteases in central nervous system pathogenesis and pathophysiology was examined. Results Using an encephalitis isolate belonging to T1 genotype, we observed two major proteases with approximate molecular weights of 150 KD and 130 KD on SDS-PAGE gels using gelatin as substrate. The 130 KD protease was inhibited with phenylmethylsulfonyl fluoride (PMSF) suggesting that it is a serine protease, while the 150 KD protease was inhibited with 1, 10-phenanthroline suggesting that it is a metalloprotease. Both proteases exhibited maximal activity at neutral pH and over a range of temperatures, indicating their physiological relevance. These proteases degrade extracellular matrix (ECM), which provide structural and functional support to the brain tissue, as shown by the degradation of collagen I and III (major components of collagenous ECM), elastin (elastic fibrils of ECM), plasminogen (involved in proteolytic degradation of ECM), as well as casein and haemoglobin. The proteases were purified partially using ion-exchange chromatography and their effects were tested in an in vitro model of the blood-brain barrier using human brain microvascular endothelial cells (HBMEC). Neither the serine nor the metalloprotease exhibited HBMEC cytotoxicity. However, the serine protease exhibited HBMEC monolayer disruptions (trypsin-like) suggesting a role in blood-brain barrier perturbations. Conclusion Overall, these data suggest that Acanthamoeba proteases digest ECM, which may play crucial role(s) in invasion of the brain tissue by amoebae.

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3