Sca 1, a previously undescribed paralog from autotransporter protein-encoding genes in Rickettsia species

Author:

Ngwamidiba Maxime,Blanc Guillaume,Raoult Didier,Fournier Pierre-Edouard

Abstract

Abstract Background Among the 17 genes encoding autotransporter proteins of the "surface cell antigen" (sca) family in the currently sequenced Rickettsia genomes, ompA, sca 5 (ompB) and sca 4 (gene D), have been extensively used for identification and phylogenetic purposes for Rickettsia species. However, none of these genes is present in all 20 currently validated Rickettsia species. Of the remaining 14 sca genes, sca 1 is the only gene to be present in all nine sequenced Rickettsia genomes. To estimate whether the sca 1 gene is present in all Rickettsia species and its usefulness as an identification and phylogenetic tool, we searched for sca 1genes in the four published Rickettsia genomes and amplified and sequenced this gene in the remaining 16 validated Rickettsia species. Results Sca 1 is the only one of the 17 rickettsial sca genes present in all 20 Rickettsia species. R. prowazekii and R. canadensis exhibit a split sca 1 gene whereas the remaining species have a complete gene. Within the sca 1 gene, we identified a 488-bp variable sequence fragment that can be amplified using a pair of conserved primers. Sequences of this fragment are specific for each Rickettsia species. The phylogenetic organization of Rickettsia species inferred from the comparison of sca 1 sequences strengthens the classification based on the housekeeping gene gltA and is similar to those obtained from the analyses of ompA, sca 5 and sca4, thus suggesting similar evolutionary constraints. We also observed that Sca1 protein sequences have evolved under a dual selection pressure: with the exception of typhus group rickettsiae, the amino-terminal part of the protein that encompasses the predicted passenger domain, has evolved under positive selection in rickettsiae. This suggests that the Sca1 protein interacts with the host. In contrast, the C-terminal portion containing the autotransporter domain has evolved under purifying selection. In addition, sca 1 is transcribed in R. conorii, and might therefore be functional in this species. Conclusion The sca 1 gene, encoding an autotransporter protein that evolves under dual evolution pressure, is the only sca- family gene to be conserved by all Rickettsia species. As such, it is a valuable identification target for these bacteria, especially because rickettsial isolates can be identified by amplification and sequencing of a discriminatory gene fragment using a single primer pair. It may also be used as a phylogenetic tool. However, its current functional status remains to be determined although it was found expressed in R. conorii.

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3