Optimization of a large-scale gene disruption protocol in Dictyostelium and analysis of conserved genes of unknown function
-
Published:2006-08-31
Issue:1
Volume:6
Page:
-
ISSN:1471-2180
-
Container-title:BMC Microbiology
-
language:en
-
Short-container-title:BMC Microbiol
Author:
Torija Patricia,Robles Alicia,Escalante Ricardo
Abstract
Abstract
Background
Development of the post-genomic age in Dictyostelium will require the existence of rapid and reliable methods to disrupt genes that would allow the analysis of entire gene families and perhaps the possibility to undertake the complete knock-out analysis of all the protein-coding genes present in Dictyostelium genome.
Results
Here we present an optimized protocol based on the previously described construction of gene disruption vectors by in vitro transposition. Our method allows a rapid selection of the construct by a simple PCR approach and subsequent sequencing. Disruption constructs were amplified by PCR and the products were directly transformed in Dictyostelium cells. The selection of homologous recombination events was also performed by PCR. We have constructed 41 disruption vectors to target genes of unknown function, highly conserved between Dictyostelium and human, but absent from the genomes of S. cerevisiae and S. pombe. 28 genes were successfully disrupted.
Conclusion
This is the first step towards the understanding of the function of these conserved genes and exemplifies the easiness to undertake large-scale disruption analysis in Dictyostelium.
Publisher
Springer Science and Business Media LLC
Subject
Microbiology (medical),Microbiology
Reference13 articles.
1. Eichinger L, Pachebat JA, Glockner G, Rajandream MA, Sucgang R, Berriman M, Song J, Olsen R, Szafranski K, Xu Q, Tunggal B, Kummerfeld S, Madera M, Konfortov BA, Rivero F, Bankier AT, Lehmann R, Hamlin N, Davies R, Gaudet P, Fey P, Pilcher K, Chen G, Saunders D, Sodergren E, Davis P, Kerhornou A, Nie X, Hall N, Anjard C, Hemphill L, Bason N, Farbrother P, Desany B, Just E, Morio T, Rost R, Churcher C, Cooper J, Haydock S, van Driessche N, Cronin A, Goodhead I, Muzny D, Mourier T, Pain A, Lu M, Harper D, Lindsay R, Hauser H, James K, Quiles M, Madan Babu M, Saito T, Buchrieser C, Wardroper A, Felder M, Thangavelu M, Johnson D, Knights A, Loulseged H, Mungall K, Oliver K, Price C, Quail MA, Urushihara H, Hernandez J, Rabbinowitsch E, Steffen D, Sanders M, Ma J, Kohara Y, Sharp S, Simmonds M, Spiegler S, Tivey A, Sugano S, White B, Walker D, Woodward J, Winckler T, Tanaka Y, Shaulsky G, Schleicher M, Weinstock G, Rosenthal A, Cox EC, Chisholm RL, Gibbs R, Loomis WF, Platzer M, Kay RR, Williams J, Dear PH, Noegel AA, Barrell B, Kuspa A: The genome of the social amoeba Dictyostelium discoideum. Nature. 2005, 435: 43-57. 10.1038/nature03481. 2. Hereld D, Jin T: Moving toward understanding eukaryotic chemotaxis. Eur J Cell Biol. 2006, 3. Robinson DN, Spudich JA: Mechanics and regulation of cytokinesis. Curr Opin Cell Biol. 2004, 16: 182-188. 10.1016/j.ceb.2004.02.002. 4. Escalante R, Vicente JJ: Dictyostelium discoideum: a model system for differentiation and patterning. Int J Dev Biol. 2000, 44: 819-835. 5. Torija P, Vicente JJ, Rodrigues T, Robles A, Cerdan S, Sastre L, Calvo R, Escalante R: Functional genomics in Dictyostelium: MidA, a new conserved protein, is required for mitochondrial function and development. J Cell Sci. 2006, 119: 1154-1164. 10.1242/jcs.02819.
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|