Author:
Gomez Fernando,Monsalve Gabriela C,Tse Vincent,Saiki Ryoichi,Weng Emily,Lee Laura,Srinivasan Chandra,Frand Alison R,Clarke Catherine F
Abstract
Abstract
Background
Studies with the nematode model Caenorhabditis elegans have identified conserved biochemical pathways that act to modulate life span. Life span can also be influenced by the composition of the intestinal microbiome, and C. elegans life span can be dramatically influenced by its diet of Escherichia coli. Although C. elegans is typically fed the standard OP50 strain of E. coli, nematodes fed E. coli strains rendered respiratory deficient, either due to a lack coenzyme Q or the absence of ATP synthase, show significant life span extension. Here we explore the mechanisms accounting for the enhanced nematode life span in response to these diets.
Results
The intestinal load of E. coli was monitored by determination of worm-associated colony forming units (cfu/worm or coliform counts) as a function of age. The presence of GFP-expressing E. coli in the worm intestine was also monitored by fluorescence microscopy. Worms fed the standard OP50 E. coli strain have high cfu and GFP-labeled bacteria in their guts at the L4 larval stage, and show saturated coliform counts by day five of adulthood. In contrast, nematodes fed diets of respiratory deficient E. coli lacking coenzyme Q lived significantly longer and failed to accumulate bacteria within the lumen at early ages. Animals fed bacteria deficient in complex V showed intermediate coliform numbers and were not quite as long-lived. The results indicate that respiratory deficient Q-less E. coli are effectively degraded in the early adult worm, either at the pharynx or within the intestine, and do not accumulate in the intestinal tract until day ten of adulthood.
Conclusions
The findings of this study suggest that the nematodes fed the respiratory deficient E. coli diet live longer because the delay in bacterial colonization of the gut subjects the worms to less stress compared to worms fed the OP50 E. coli diet. This work suggests that bacterial respiration can act as a virulence factor, influencing the ability of bacteria to colonize and subsequently harm the animal host. Respiratory deficient bacteria may pose a useful model for probing probiotic relationships within the gut microbiome in higher organisms.
Publisher
Springer Science and Business Media LLC
Subject
Microbiology (medical),Microbiology
Reference57 articles.
1. Prakash S, Rodes L, Coussa-Charley M, Tomaro-Duchesneau C: Gut microbiota: next frontier in understanding human health and development of biotherapeutics. Biologics: targets & therapy. 2011, 5: 71-86.
2. Mai V, Draganov PV: Recent advances and remaining gaps in our knowledge of associations between gut microbiota and human health. World J Gastroenterol. 2009, 15 (1): 81-85. 10.3748/wjg.15.81.
3. Dobrogosz WJ, Peacock TJ, Hassan HM: Evolution of the probiotic concept from conception to validation and acceptance in medical science. Adv Appl Microbiol. 2010, 72: 1-41.
4. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA: Diversity of the human intestinal microbial flora. Science. 2005, 308 (5728): 1635-1638. 10.1126/science.1110591.
5. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, et al: Human gut microbiome viewed across age and geography. Nature. 2012, 486 (7402): 222-227.
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献