Author:
Chen Yu-Ting,Wen Lisa,Ho Kuo-Chuan,Juang Rong-Huay,Lin Chi-Tsai
Abstract
Abstract
Background
Protein disulfide isomerases (PDIs), a family of structurally related enzymes, aid in protein folding by catalyzing disulfide bonds formation, breakage, or isomerization in newly synthesized proteins and thus.
Results
A ClPDI cDNA (1828 bp, GenBank accession HM641784) encoding a putative PDI from Citrus limonum was cloned by polymerase chain reaction (PCR). The DNA sequence encodes a protein of 500 amino acids with a calculated molecular mass of 60.5 kDa. The deduced amino acid sequence is conserved among the reported PDIs. A 3-D structural model of the ClPDI has been created based on the known crystal structure of Homo sapiens (PDB ID: 3F8U_A). The enzyme has two putative active sites comprising the redox-active disulfides between residues 60–63 and 405–408 (motif CGHC). To further characterize the ClPDI, the coding region was subcloned into an expression vector pET-20b (+), transformed into E. coli Rosetta (DE3)pLysS, and recombinant protein expressed. The recombinant ClPDI was purified by a nickel Sepharose column. PDI’s activity was assayed based on the ability of the enzyme to isomerize scrambled RNase A (sRNase A) to active enzyme. The K
M
, k
cat and k
cat/K
M values were 8.3 × 10-3 μM, 3.0 × 10-5 min-1, and 3.6 × 10-1 min-1 mM-1. The enzyme was most active at pH 8.
Conclusions
The advantage of this enzyme over the PDI from all other sources is its low K
M. The potential applications of this PDI in health and beauty may worth pursuing.
Publisher
Springer Science and Business Media LLC