Author:
Huang Ai-Xia,She Xiao-Ping,Zhao Jin-Liang,Zhang Yun-Ying
Abstract
Abstract
Background
Fusicoccin (FC), a fungal phytotoxin produced by Fusicoccum amygdale, causes the inhibition of ABA-induced stomatal closure. The mechanism of inhibition is remaining unclear. We analyzed the role of hydrogen peroxide (H2O2) and relationship between H2O2 removal and cytosolic pH changes during inhibition of ABA-induced stomatal closure by FC.
Results
According to the results, ABA treatment induced H2O2 production and stomatal closure, but FC inhibited the effects of ABA on these two parameters. Treatment with catalase (CAT) and NADPH oxidase inhibitor diphenylene iodonium (DPI) mimicked the effect of FC. These data suggest that inhibition of ABA effect by FC is related to the decrease of H2O2 levels in guard cells. Furthermore, similar to CAT, FC not only suppressed stomatal closure and H2O2 levels in guard cells treated with exogenous H2O2, but also reopened the stomata which had been closed by ABA and reduced the level of H2O2 that had been produced by ABA, indicating that FC causes H2O2 removal in guard cells. The butyric acid treatment simulated the effects of FC on the stomatal aperture and H2O2 levels in guard cells treated with exogenous H2O2 and had been closed by ABA, and both FC and butyric acid reduced cytosolic pH in guard cells of stomata treated with H2O2 and had been closed by ABA, which demonstrate that cytosolic acidification mediates FC-induced H2O2 removal.
Conclusion
These results suggest that FC causes cytosolic acidification in guard cells, then induces H2O2 removal and reduces H2O2 levels in guard cells, finally inhibits stomatal closure induced by ABA.
Publisher
Springer Science and Business Media LLC
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献