Abstract
AbstractThe anaerobic, gastrointestinal pathogen Clostridioides difficile can cause severe forms of enterocolitis which is mainly mediated by the toxins it produces. The RNA polymerase inhibitor Fidaxomicin is the current gold standard for the therapy of C. difficile infections due to several beneficial features including its ability to suppress toxin synthesis in C. difficile. In contrast to the Rifamycins, Fidaxomicin binds to the RNA polymerase switch region, which is also the binding site for Myxopyronin B. Here, serial broth dilution assays were performed to test the susceptibility of C. difficile and other anaerobes to Myxopyronin B, proving that the natural product is considerably active against C. difficile and that there is no cross-resistance between Fidaxomicin and Myxopyronin B in a Fidaxomicin-resistant C. difficile strain. Moreover, mass spectrometry analysis indicated that Myxopyronin B is able to suppress early phase toxin synthesis in C. difficile to the same degree as Fidaxomicin. Conclusively, Myxopyronin B is proposed as a new lead structure for the design of novel antibiotics for the therapy of C. difficile infections.
Funder
Bundesministerium für Bildung und Forschung
Universität Greifswald
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Virology,Gastroenterology,Microbiology,Parasitology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献