Curcumin assists anti-EV71 activity of IFN-α by inhibiting IFNAR1 reduction in SH-SY5Y cells

Author:

Wang Yanfang,Dan Kena,Xue Xiaoling,Chen Bangtao,Chen ChengORCID

Abstract

Abstract Background and aim Enterovirus 71(EV71) can cause severe hand, foot, and mouth disease (HFMD) with brain tissue involvement. Few effective anti-EV71 drugs are presently available in clinical practice. Interferon-α (IFN-α) was ineffective while Curcumin was effective in restricting EV71 replication in non-neuronal cells. Ubiquitin–proteasome-mediated degradation of interferon-alpha receptor 1 (IFNAR1) protein contributes to IFN-α resistance. Current study aimed to determine synergistic inhibition of EV71 by Curcumin and IFN-α in human neuroblastoma SH-SY5Y cells. Methods SH-SY5Y cells were infected with mock-/Curcumin-pre-incubated EV71 or transfected with plasmid containing interferon-stimulated response element (ISRE) or mRNA containing viral internal ribosomal entry site (IRES) following by post-treatment with Curcumin with or without IFN-α. Supernatant IFN-α/β was detected by ELISA. ISRE, IRSE, proteasome and deubiquitinating activity were measured by luciferase assay. EV71 RNA and viral protein or IFNAR1 were determined by qPCR and western blot, respectively. Results EV71 flailed to completely block IFN-α/β production but inhibited IFN-α signal. Curcumin only slightly inhibited EV71 proliferation without modulating virus attachment and internalization. However, Curcumin addition restored IFN-α-mediated ISRE activity thus significantly inhibiting EV71 replication. Furthermore, EV71 also reduced IFNAR1 protein with proteasome-dependence in SH-SY5Y cells, which can be reversed by Curcumin addition with the evidence that it lowered proteasome activity. Conclusion These data demonstrate that Curcumin assists anti-EV71 activity of IFN-α by inhibiting IFNAR1 reduction via ubiquitin–proteasome disruption in SH-SY5Y cells.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Virology,Gastroenterology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3