Abstract
Abstract
Antimicrobial resistance (AMR) has emerged as an obstacle in the supple administration of antimicrobial agents to critical diarrheal patients. Most diarrheal pathogens have developed resistance against the major classes of antibiotics commonly used for assuaging diarrheal symptoms. Antimicrobial resistance develops when pathogens acquire antimicrobial resistance genes (ARGs) through genetic recombination from commensals and pathogens. These are the constituents of the complex microbiota in all ecological niches. The recombination events may occur in the environment or in the gut. Containment of AMR can be achieved through a complete understanding of the complex and diverse structure and function of the microbiota. Its taxonomic entities serve as focal points for the dissemination of antimicrobial resistance genetic determinants. Molecular methods complemented with culture-based diagnostics have been historically implemented to document these natural events. However, the advent of next-generation sequencing has revolutionized the field of molecular epidemiology. It has revolutionized the method of addressing relevant problems like diagnosis and surveillance of infectious diseases and the issue of antimicrobial resistance. Metagenomics is one such next-generation technique that has proved to be a monumental advancement in the area of molecular taxonomy. Current understanding of structure, function and dysbiosis of microbiota associated with antimicrobial resistance was realized due to its conception. This review describes the major milestones achieved due to the advent and implementation of this new technique in the context of antimicrobial resistance. These achievements span a wide panorama from the discovery of novel microorganisms to invention of translational value.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Virology,Gastroenterology,Microbiology,Parasitology
Reference75 articles.
1. Anderson M, Clift C, Schulze K, Sagan A,Nahrgang S, Ouakrim DA, Mossialos E. Policy Brief 32. Averting the AMR crisis. What are the avenues for policy action for countries in Europe. European Observatory on Health Systems and Policies. 2019. Accessed Sept 2019.
2. Collignon PJ, Conly JM, Andremont A, McEwen SA, Aidara-Kane A, World Health Organization Advisory Group, Bogotá Meeting on Integrated Surveillance of Antimicrobial Resistance (WHO-AGISAR), Agerso Y, Andremont A, Collignon P, Conly J, Dang Ninh T, Donado-Godoy P, et al. World Health Organization ranking of antimicrobials according to their importance in human medicine: a critical step for developing risk management strategies to control antimicrobial resistance from food animal production. Clin Infect Dis. 2016;63(8):1087–93.
3. WHO report on surveillance of antibiotic consumption: 2016–2018 early implementation. Geneva: World Health Organization; 2018. Licence: CC BY-NC-SA 3.0 IGO.
https://www.who.int/medicines/areas/rational_use/who-amr-amc-report-20181109.pdf
. Accessed Sept 2019.
4. Chokshi A, Sifri Z, Cennimo D, Horng H. Global contributors to antibiotic resistance. J Glob Infect Dis. 2019;11:36–42.
5. Cairns J, Becks L, Jalasvuori M, Hiltunen T. Sublethal streptomycin concentrations and lytic bacteriophage together promote resistance evolution. Philos Trans R Soc B. 2017;372:20160040.
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献