Allelic functional variation of FimH among Salmonella enterica subspecies

Author:

Kang Xiamei,Chen Jiaqi,Zhou Xiao,Ed-Dra Abdelaziz,Yue MinORCID

Abstract

AbstractSalmonella enterica has a wide diversity, with numerous serovars belonging to six different subspecies with dynamic animal-host tropism. The FimH protein is the adhesin mediating binding to various cells, and slight amino acid discrepancy significantly affects the adherence capacities. To date, the general function of FimH variability across different subspecies of Salmonella enterica has not been addressed. To investigate the biological functions of FimH among the six Salmonella enterica subspecies, the present study performed several assays to determine biofilm formation, Caenorhabditis elegans killing, and intestinal porcine enterocyte cell IPEC-J2 adhesion by using various FimH allele mutants. In general, allelic mutations in both the lectin and pilin domains of FimH could cause changes in binding affinity, such as the N79S mutation. We also observed that the N79S variation in Salmonella Dublin increased the adhesive ability of IPEC-J2 cells. Moreover, a new amino acid substitution, T260M, within the pilin domain in one subspecies IIIb strain beneficial to binding to cells was highlighted in this study, even though the biofilm-forming and Caenorhabditis elegans-killing abilities exhibited no significant differences in variants. Combined with point mutations being a natural tendency due to positive selection in harsh environments, we speculate that allelic variation T260M probably contributes to pathoadaptive evolution in Salmonella enterica subspecies IIIb.

Funder

National Program on Key Research Project of China

European Union's Horizon 2020 Research and Innovation Programme

Zhejiang Provincial Key R&D Program of China

Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City

Key Research and Development Program of Hangzhou

Publisher

Springer Science and Business Media LLC

Subject

Virology,General Veterinary,Animal Science and Zoology,Immunology and Microbiology (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3