Abstract
AbstractInfectious pandemics result in hundreds and millions of deaths, notable examples of the Spanish Flu, the Black Death and smallpox. The current pandemic, caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), is unprecedented even in the historical term of pandemics. The unprecedentedness is featured by multiple surges, rapid identification of therapeutic options and accelerated development of vaccines. Remdesivir, originally developed for Ebola viral disease, is the first treatment of COVID-19 (Coronavirus disease 2019) approved by the United States Food and Drug Administration. As demonstrated by in vitro and preclinical studies, this therapeutic agent is highly potent with a broad spectrum activity against viruses from as many as seven families even cross species. However, randomized controlled trials have failed to confirm the efficacy and safety. Remdesivir improves some clinical signs but not critical parameters such as mortality. This antiviral agent is an ester/phosphorylation prodrug and excessive hydrolysis which increases cellular toxicity. Remdesivir is given intravenously, leading to concentration spikes and likely increasing the potential of hydrolysis-based toxicity. This review has proposed a conceptual framework for improving its efficacy and minimizing toxicity not only for the COVID-19 pandemic but also for future ones caused by remdesivir-sensitive viruses.
Funder
National Institutes of Health
University of Cincinnati Cancer Center
Publisher
Springer Science and Business Media LLC
Reference151 articles.
1. Abu-Zeinah, G., and M.T. DeSancho. 2020. Understanding sideroblastic anemia: An overview of genetics, epidemiology, pathophysiology and current therapeutic options. Journal of Blood Medicine 11: 305–318.
2. Alshaeri, H.K., and Z.S. Natto. 2020. A contemporary look at COVID-19 medications: Available and potentially effective drugs. European Review for Medical and Pharmacological Sciences 24: 9188–9195.
3. Anderson, R.M., C. Fraserm, A.C. Ghanim, C.A. Donnelly, S. Riley, N.M. Ferguson, G.M. Leung, T.H. Lam, and A.J. Hedley. 2004. Epidemiology, transmission dynamics and control of SARS: The 2002-2003 epidemic. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 359: 1091–1105.
4. Azhar, E.I., D.S.C. Hui, Z.A. Memish, C. Drosten, and A. Zumla. 2019. The Middle East respiratory syndrome (MERS). Infectious Disease Clinics of North America 33: 891–905.
5. Bao, L., W. Deng, B. Huang, H. Gao, J. Liu, L. Ren, Q. Wei, P. Yu, Y. Xu, F. Qi, et al. 2020. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature. 583: 830–833.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献