Author:
López de Victoria Aliana,Kieslich Chris A,Rizos Apostolos K,Krambovitis Elias,Morikis Dimitrios
Abstract
Abstract
Background
The V3 loop of the glycoprotein gp120 of HIV-1 plays an important role in viral entry into cells by utilizing as coreceptor CCR5 or CXCR4, and is implicated in the phenotypic tropisms of HIV viruses. It has been hypothesized that the interaction between the V3 loop and CCR5 or CXCR4 is mediated by electrostatics. We have performed hierarchical clustering analysis of the spatial distributions of electrostatic potentials and charges of V3 loop structures containing consensus sequences of HIV-1 subtypes.
Results
Although the majority of consensus sequences have a net charge of +3, the spatial distribution of their electrostatic potentials and charges may be a discriminating factor for binding and infectivity. This is demonstrated by the formation of several small subclusters, within major clusters, which indicates common origin but distinct spatial details of electrostatic properties. Some of this information may be present, in a coarse manner, in clustering of sequences, but the spatial details are largely lost. We show the effect of ionic strength on clustering of electrostatic potentials, information that is not present in clustering of charges or sequences. We also make correlations between clustering of electrostatic potentials and net charge, coreceptor selectivity, global prevalence, and geographic distribution. Finally, we interpret coreceptor selectivity based on the N6X7T8|S8X9 sequence glycosylation motif, the specific positive charge location according to the 11/24/25 rule, and the overall charge and electrostatic potential distribution.
Conclusions
We propose that in addition to the sequence and the net charge of the V3 loop of each subtype, the spatial distributions of electrostatic potentials and charges may also be important factors for receptor recognition and binding and subsequent viral entry into cells. This implies that the overall electrostatic potential is responsible for long-range recognition of the V3 loop with coreceptors CCR5/CXCR4, whereas the charge distribution contributes to the specific short-range interactions responsible for the formation of the bound complex. We also propose a scheme for coreceptor selectivity based on the sequence glycosylation motif, the 11/24/25 rule, and net charge.
Publisher
Springer Science and Business Media LLC
Reference78 articles.
1. Emini EA, Koof WC: Developing and AIDS vaccine: need, uncertainty, hope. Science. 2004, 304: 1913-1914. 10.1126/science.1100368.
2. Wyatt R, Sodroski J: The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Proc Natl Acad Sci USA. 1998, 280: 1884-1888.
3. Chan DC, Fass D, Berger JM, Kim PS: Core structure of gp41 from the HIV envelope glycoprotein. Cell. 1997, 89: 263-273. 10.1016/S0092-8674(00)80205-6.
4. Krambovitis E, Porichis F, Spandidos DA: HIV-1 cell entry inhibitors: a new generation of antiretroviral drugs. ACTA Pharmacologica Sinica. 2005, 26: 1165-1173. 10.1111/j.1745-7254.2005.00193.x.
5. Huang C, Tang M, Zhang MY, Majeed S, Montabana E, Stanfielg RL, Dimitrov DS, Korber B, Sodroski J, Wilson IA, Wyatt R, Kwong PD: Structure of a V3-containing HIV-1 gp120 core. Science. 2006, 310: 1025-28.
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献