Considerations for the use of plausible values in large-scale assessments

Author:

Jewsbury Paul A.ORCID,Jia YueORCID,Gonzalez Eugenio J.ORCID

Abstract

AbstractLarge-scale assessments are rich sources of data that can inform a diverse range of research questions related to educational policy and practice. For this reason, datasets from large-scale assessments are available to enable secondary analysts to replicate and extend published reports of assessment results. These datasets include multiple imputed values for proficiency, known as plausible values. Plausible values enable the analysis of achievement in large-scale assessment data with complete-case statistical methods such as t-tests implemented in readily-available statistical software. However, researchers are often challenged by the complex and unfamiliar nature of plausible values, large-scale assessments, and their datasets. Misunderstandings and misuses of plausible values may therefore arise. The aims of this paper are to explain what plausible values are, why plausible values are used in large-scale assessments, and how plausible values should be used in secondary analysis of the data. Also provided are answers to secondary researchers’ frequently asked questions about the use of plausible values in analysis gathered by the authors during their experience advising secondary users of these databases.

Funder

Educational Testing Service

Publisher

Springer Science and Business Media LLC

Reference67 articles.

1. Asparouhov, T., & Muthén, B. O. (2010). Plausible values for latent variables using Mplus. Mplus Technical Appendix. Muthén and Muthén.

2. Avvisati, F. & Keslair, F. (2014). REPEST: Stata module to run estimations with weighted replicate samples and plausible values, Statistical Software Components S457918, Boston College Department of Economics, revised 06 Jan 2020. https://ideas.repec.org/c/boc/bocode/s457918.html

3. Bailey, P., Lee, M., Nguyen, T., & Zhang, T. (2020). Using EdSurvey to Analyse PIAAC Data. In D. Maehler & B. Rammstedt (Eds.), Large-scale cognitive assessment. Cham: Springer. https://doi.org/10.1007/978-3-030-47515-4_9

4. Beaton, A. E., & Barone, J. L. (2017). Large-scale group-score assessment. In R. E. Bennett & M. von Davier (Eds.), Advancing human assessment: The methodological, psychological, and policy contributions of ETS (pp. 233–284). Springer. https://doi.org/10.1007/978-3-319-58689-2_8

5. Beaton, A. E., Rogers, A. M., Gonzalez, E., Hanly, M. B., Kolstad, A., Rust, K. F., Sikali, E., Stokes, L., & Jia, Y. (2011). The NAEP Primer (NCES 2011–463). U.S. Department of Education, National Center for Education Statistics. https://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2011463

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3