Abstract
AbstractProcess data are becoming more and more popular in education research. In the field of computer-based assessments of collaborative problem solving (ColPS), process data have been used to identify students’ test-taking strategies while working on the assessment, and such data can be used to complement data collected on accuracy and overall performance. Such information can be used to understand, for example, whether students are able to use a range of styles and strategies to solve different problems, given evidence that such cognitive flexibility may be important in labor markets and societies. In addition, process information might help researchers better identify the determinants of poor performance and interventions that can help students succeed. However, this line of research, particularly research that uses these data to profile students, is still in its infancy and has mostly been centered on small- to medium-scale collaboration settings between people (i.e., the human-to-human approach). There are only a few studies involving large-scale assessments of ColPS between a respondent and computer agents (i.e., the human-to-agent approach), where problem spaces are more standardized and fewer biases and confounds exist. In this study, we investigated students’ ColPS behavioral patterns using latent profile analyses (LPA) based on two types of process data (i.e., response times and the number of actions) collected from the Program for International Student Assessment (PISA) 2015 ColPS assessment, a large-scale international assessment of the human-to-agent approach. Analyses were conducted on test-takers who: (a) were administered the assessment in English and (b) were assigned the Xandar unit at the beginning of the test. The total sample size was N = 2,520. Analyses revealed two profiles (i.e., Profile 1 [95%] vs. Profile 2 [5%]) showing different behavioral characteristics across the four parts of the assessment unit. Significant differences were also found in overall performance between the profiles.
Publisher
Springer Science and Business Media LLC
Reference109 articles.
1. Andrews-Todd, J. J., Kerr, D., Mislevy, R. J., von Davier, A., Hao, J., & Liu, L. (2017). Modeling collaborative interaction patterns in a simulation-based task. Journal of Educational Measurement, 54(1), 54–69. https://doi.org/10.1111/jedm.12132.
2. Andrews-Todd, J. J., Forsyth, C., Steinberg, J., & Rupp, A. (2018). Identifying profiles of collaborative problem solvers in an online electronics environment. Proceedings of the 11th International Conference on Educational Data Mining (EDM’18), 16–18 July 2018, Raleigh, NC, USA (pp. 239–245). https://eric.ed.gov/?id=ED593219.
3. Asparouhov, T. (2005). Sampling weights in latent variable modeling. Structural Equation Modeling: A Multidisciplinary Journal, 12(3), 411–434. https://doi.org/10.1207/s15328007sem1203_4.
4. Asparouhov, T., & Muthén, B. (2010). Plausible values for latent variables using Mplus https://www.statmodel.com/download/Plausible.pdf.
5. Asparouhov, T., & Muthén, B. (2014). Auxiliary variables in mixture modeling: Three-step approaches using Mplus. Structural Equation Modeling: A Multidisciplinary Journal, 21(3), 329–341. https://doi.org/10.1080/10705511.2014.915181.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献