Author:
Akkurt David,Akay Yasemin M,Akay Metin
Abstract
Abstract
Previous studies suggested that γ oscillations in the brain are associated with higher order cognitive function including selective visual attention, motor task planning, sensory perception, working memory and dreaming REM sleep. These oscillations are mainly observed in cortical regions and also occur in neocortical and subcortical areas and the hippocampus. In this paper, we investigate the influence of acute exposure to nicotine on the complexity of hippocampal γ oscillations.
Using the approximate entropy method, the influence of acute nicotine exposure on the hippocampal γ oscillations was investigated. The hippocampal γ oscillations have been generated in response to the 100 Hz stimulus and isolated using the visual inspection and spectral analysis method. Our central hypothesis is that acute exposure to nicotine significantly reduces the complexity of hippocampal γ oscillations. We used brain-slice recordings and the approximate entropy method to test this hypothesis. The approximate entropy (complexity) values of the hippocampal γ oscillations are estimated from the 14 hippocampal slices. Our results show that it takes at least 100 msec to see any hippocampal activities in response to the 100 Hz stimulus. These patterns noticeably changed after 100 msec until 300 msec after the stimulus Finally, they were less prominent after 300 msec. We have analyzed the isolated hippocampal γ oscillations (between 150 and 250 msec after the stimulus) using the approximate entropy (ApEn) method. Our results showed that the ApEn (complexity) values of hippocampal γ oscillations during nicotine exposure were reduced compared to those of hippocampal γ oscillations during control, and washout. This reduction was much more significant in response to acute nicotine exposure (p < 0.05) compared to those during control and washout conditions. These results suggest that the neural firing becomes regular and the hippocampal networks become synchronized in response to nicotine exposure.
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Rehabilitation
Reference40 articles.
1. Brautbar N: Direct effects of nicotine on the brain: evidence for chemical addiction. Archives of Environmental Health 1995, 1: 263. 10.1080/00039896.1995.9935952
2. Heishman SC, Taylor RC, Henningfield JE: Nicotine and smoking: a review of effects on human performance. Exp Clin Psychopharmacol 1994, 2: 1-51.
3. Rusted JM, Newhouse PA, Levin ED: Nicotinic treatment for degenerative neuropsychiatric disorders such as alzheimer's disease and parkinson's disease. Behav Brain Res 2000, 113: 121-129. 10.1016/S0166-4328(00)00207-2
4. MacDermott AB, Role LW, Siegelbaum SA: Presynaptic ionotropic receptors and the control of transmitter release. Nature Reviews Neuroscience 1999, 22: 443-485.
5. Levin E, Wilson W, McEvoy J, Rose J: Nicotine-haloperidol interactions and cognitive performance in schizophrenics. Neuropsycopharmacology 1996, 15: 429-436. 10.1016/S0893-133X(96)00018-8
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献