Sub-threshold spinal cord stimulation facilitates spontaneous motor activity in spinal rats

Author:

Gad Parag,Choe Jaehoon,Shah Prithvi,Garcia-Alias Guillermo,Rath Mrinal,Gerasimenko Yury,Zhong Hui,Roy Roland R,Edgerton Victor Reggie

Abstract

Abstract Background Epidural stimulation of the spinal cord can be used to enable stepping on a treadmill (electrical enabling motor control, eEmc) after a complete mid-thoracic spinal cord transection in adult rats. Herein we have studied the effects of eEmc using a sub-threshold intensity of stimulation combined with spontaneous load-bearing proprioception to facilitate hindlimb stepping and standing during daily cage activity in paralyzed rats. Methods We hypothesized that eEmc combined with spontaneous cage activity would greatly increase the frequency and level of activation of the locomotor circuits in paralyzed rats. Spontaneous cage activity was recorded using a specially designed swivel connector to record EMG signals and an IR based camcorder to record video. Results and conclusion The spinal rats initially were very lethargic in their cages showing little movement. Without eEmc, the rats remained rather inactive with the torso rarely being elevated from the cage floor. When the rats used their forelimbs to move, the hindlimbs were extended and dragged behind with little or no flexion. In contrast, with eEmc the rats were highly active and the hindlimbs showed robust alternating flexion and extension resulting in step-like movements during forelimb-facilitated locomotion and often would stand using the sides of the cages as support. The mean and summed integrated EMG levels in both a hindlimb flexor and extensor muscle were higher with than without eEmc. These data suggest that eEmc, in combination with the associated proprioceptive input, can modulate the spinal networks to significantly amplify the amount and robustness of spontaneous motor activity in paralyzed rats.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Rehabilitation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3