Author:
Dragomir Andrei,Akay Yasemin,Curran Aidan K,Akay Metin
Abstract
Abstract
Background
The laryngeal chemoreflex exists in infants as a primary sensory mechanism for defending the airway from the aspiration of liquids. Previous studies have hypothesized that prolonged apnea associated with this reflex may be life threatening and might be a cause of sudden infant death syndrome.
Methods
In this study we quantified the output of the respiratory neural network, the diaphragm EMG signal, during the laryngeal chemoreflex and eupnea in early postnatal (3–10 days) piglets. We tested the hypothesis that diaphragm EMG activity corresponding to reflex-related events involved in clearance (restorative) mechanisms such as cough and swallow exhibit lower complexity, suggesting that a synchronized homogeneous group of neurons in the central respiratory network are active during these events. Nonlinear dynamic analysis was performed using the approximate entropy to asses the complexity of respiratory patterns.
Results
Diaphragm EMG, genioglossal activity EMG, as well as other physiological signals (tracheal pressure, blood pressure and respiratory volume) were recorded from 5 unanesthetized chronically instrumented intact piglets. Approximate entropy values of the EMG during cough and swallow were found significantly (p < 0.05 and p < 0.01 respectively) lower than those of eupneic EMG.
Conclusion
Reduced complexity values of the respiratory neural network output corresponding to coughs and swallows suggest synchronous neural activity of a homogeneous group of neurons. The higher complexity values exhibited by eupneic respiratory activity are the result of a more random behaviour, which is the outcome of the integrated action of several groups of neurons involved in the respiratory neural network.
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Rehabilitation
Reference21 articles.
1. Velde L, Curran AK, Filiano JJ, Darnall RA, Bartlett D Jr, Leiter JC: Prolongation of the laryngeal chemoreflex after inhibition of the rostral ventral medulla in piglets: a role in SIDS? J Appl Physiol 2003, 94: 1883-1895.
2. Page M, Jeffery H, Post R, Woods J: Stimulated pharyngeal reflux can lead to life-threatening apnea if swallowing and arousal are depressed. J SIDS Infant Mortal 1996, 2: 281-293.
3. Harding R, Johnson P, McClelland ME: Liquid-sensitive laryngeal receptors in the developoing sheep, cat and monkey. J Physiol 1977, 277: 409-422.
4. Filiano JJ, Kinney HC: A perspective on neuropathological findings in victims of the Sudden Infant Death Syndrome. Biol Neonate 1994, 65: 194-197. 10.1159/000133631
5. Thach BT: Maturation and transformation of reflexes that protect the laryngeal airway from liquid aspiration from fetal to adult life. Am J Med 2001, 111: 69S-77S. 10.1016/S0002-9343(01)00860-9
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献