Advances in wearable technology and applications in physical medicine and rehabilitation

Author:

Bonato Paolo

Abstract

Abstract The development of miniature sensors that can be unobtrusively attached to the body or can be part of clothing items, such as sensing elements embedded in the fabric of garments, have opened countless possibilities of monitoring patients in the field over extended periods of time. This is of particular relevance to the practice of physical medicine and rehabilitation. Wearable technology addresses a major question in the management of patients undergoing rehabilitation, i.e. have clinical interventions a significant impact on the real life of patients? Wearable technology allows clinicians to gather data where it matters the most to answer this question, i.e. the home and community settings. Direct observations concerning the impact of clinical interventions on mobility, level of independence, and quality of life can be performed by means of wearable systems. Researchers have focused on three main areas of work to develop tools of clinical interest: 1)the design and implementation of sensors that are minimally obtrusive and reliably record movement or physiological signals, 2)the development of systems that unobtrusively gather data from multiple wearable sensors and deliver this information to clinicians in the way that is most appropriate for each application, and 3)the design and implementation of algorithms to extract clinically relevant information from data recorded using wearable technology. Journal of NeuroEngineering and Rehabilitation has devoted a series of articles to this topic with the objective of offering a description of the state of the art in this research field and pointing to emerging applications that are relevant to the clinical practice in physical medicine and rehabilitation.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Rehabilitation

Reference25 articles.

1. Finch E, Brooks D, Mayo NE, Stratford PW: Physical Rehabilitation Outcome Measures: A Guide to Enhanced Clinical Decision-Making. 2nd edition. Philadelphia: Lippincott Williams & Wilkins; 2002.

2. Frontera W: The importance of technology in rehabilitation. IEEE Eng Med Biol Mag 2003,22(3):25.

3. Stein J: Wearable sensor technology for functional assessment after stroke. IEEE Eng Med Biol Mag 2003,22(3):26-27.

4. Busser HJ, de Korte WG, Glerum EB, van Lummel RC, et al.: Method for objective assessment of physical work load at the workplace. Ergonomics 1998,41(10):1519-1526. 10.1080/001401398186252

5. Bussmann JB, Tulen JH, van Herel EC, Stam HJ: Quantification of physical activities by means of ambulatory accelerometry: a validation study. Psychophysiology 1998,35(5):488-496. 10.1017/S0048577298971153

Cited by 219 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3