Author:
Lee Beom-Chan,Kim Jeonghee,Chen Shu,Sienko Kathleen H
Abstract
AbstractBackgroundIn their current laboratory-based form, existing vibrotactile sensory augmentation technologies that provide cues of body motion are impractical for home-based rehabilitation use due to their size, weight, complexity, calibration procedures, cost, and fragility.MethodsWe have designed and developed a cell phone based vibrotactile feedback system for potential use in balance rehabilitation training in clinical and home environments. It comprises an iPhone with an embedded tri-axial linear accelerometer, custom software to estimate body tilt, a "tactor bud" accessory that plugs into the headphone jack to provide vibrotactile cues of body tilt, and a battery. Five young healthy subjects (24 ± 2.8 yrs, 3 females and 2 males) and four subjects with vestibular deficits (42.25 ± 13.5 yrs, 2 females and 2 males) participated in a proof-of-concept study to evaluate the effectiveness of the system. Healthy subjects used the system with eyes closed during Romberg, semi-tandem Romberg, and tandem Romberg stances. Subjects with vestibular deficits used the system with both eyes-open and eyes-closed conditions during semi-tandem Romberg stance. Vibrotactile feedback was provided when the subject exceeded either an anterior-posterior (A/P) or a medial-lateral (M/L) body tilt threshold. Subjects were instructed to move away from the vibration.ResultsThe system was capable of providing real-time vibrotactile cues that informed corrective postural responses. When feedback was available, both healthy subjects and those with vestibular deficits significantly reduced their A/P or M/L RMS sway (depending on the direction of feedback), had significantly smaller elliptical area fits to their sway trajectory, spent a significantly greater mean percentage time within the no feedback zone, and showed a significantly greater A/P or M/L mean power frequency.ConclusionThe results suggest that the real-time feedback provided by this system can be used to reduce body sway. Its advantages over more complex laboratory-based and commercial balance training systems in terms of cost, size, weight, functionality, flexibility, and accessibility make it a good candidate for further home-based balance training evaluation.
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Rehabilitation
Reference55 articles.
1. NIDCD: National Strategic Plan: Balance and balance disorders. National Institute on Deafness and Other Communication Disorders 1995. National Institutes of Health, NIH Publication No. 96-3217, Bethesda, Maryland
2. Moylan KC, Binder EF: Falls in older adults: risk assessment, management and prevention. Am J Med 2007, 120: 493. e491-496
3. Stevens JA, Corso PS, Finkelstein EA, Mille TR: The costs of fatal and non-fatal falls among older adults. Injury Prevention 2006, 12: 290-295. 10.1136/ip.2005.011015
4. Hansson EE, Mansson NO, Ringsberg KA, Hakansson A: Falls among dizzy patients in primary healthcare: An intervention study with control group. Int J Rehabil Res 2008, 31: 51-57. 10.1097/MRR.0b013e3282f28e2c
5. Jung JY, Kim JS, Chung PS, Woo SH, Rhee CK: Effect of vestibular rehabilitation on dizziness in the elderly. Am J Otolaryngol 2009, 20: 295-299.
Cited by
102 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献