Infrared thermography as an access pathway for individuals with severe motor impairments

Author:

Memarian Negar,Venetsanopoulos Anastasios N,Chau Tom

Abstract

Abstract Background People with severe motor impairments often require an alternative access pathway, such as a binary switch, to communicate and to interact with their environment. A wide range of access pathways have been developed from simple mechanical switches to sophisticated physiological ones. In this manuscript we report the inaugural investigation of infrared thermography as a non-invasive and non-contact access pathway by which individuals with disabilities can interact and perhaps eventually communicate. Methods Our method exploits the local temperature changes associated with mouth opening/closing to enable a highly sensitive and specific binary switch. Ten participants (two with severe disabilities) provided examples of mouth opening and closing. Thermographic videos of each participant were recorded with an infrared thermal camera and processed using a computerized algorithm. The algorithm detected a mouth open-close pattern using a combination of adaptive thermal intensity filtering, motion tracking and morphological analysis. Results High detection sensitivity and low error rate were achieved for the majority of the participants (mean sensitivity of all participants: 88.5% ± 11.3; mean specificity of all participants: 99.4% ± 0.7). The algorithm performance was robust against participant motion and changes in the background scene. Conclusion Our findings suggest that further research on the infrared thermographic access pathway is warranted. Flexible camera location, convenience of use and robustness to ambient lighting levels, changes in background scene and extraneous body movements make this a potential new access modality that can be used night or day in unconstrained environments.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Rehabilitation

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3