Author:
Cameirão Mónica S,Badia Sergi Bermúdez i,Oller Esther Duarte,Verschure Paul FMJ
Abstract
Abstract
Background
Stroke is a frequent cause of adult disability that can lead to enduring impairments. However, given the life-long plasticity of the brain one could assume that recovery could be facilitated by the harnessing of mechanisms underlying neuronal reorganization. Currently it is not clear how this reorganization can be mobilized. Novel technology based neurorehabilitation techniques hold promise to address this issue. Here we describe a Virtual Reality (VR) based system, the Rehabilitation Gaming System (RGS) that is based on a number of hypotheses on the neuronal mechanisms underlying recovery, the structure of training and the role of individualization. We investigate the psychometrics of the RGS in stroke patients and healthy controls.
Methods
We describe the key components of the RGS and the psychometrics of one rehabilitation scenario called Spheroids. We performed trials with 21 acute/subacute stroke patients and 20 healthy controls to study the effect of the training parameters on task performance. This allowed us to develop a Personalized Training Module (PTM) for online adjustment of task difficulty. In addition, we studied task transfer between physical and virtual environments. Finally, we assessed the usability and acceptance of the RGS as a rehabilitation tool.
Results
We show that the PTM implemented in RGS allows us to effectively adjust the difficulty and the parameters of the task to the user by capturing specific features of the movements of the arms. The results reported here also show a consistent transfer of movement kinematics between physical and virtual tasks. Moreover, our usability assessment shows that the RGS is highly accepted by stroke patients as a rehabilitation tool.
Conclusions
We introduce a novel VR based paradigm for neurorehabilitation, RGS, which combines specific rehabilitative principles with a psychometric evaluation to provide a personalized and automated training. Our results show that the RGS effectively adjusts to the individual features of the user, allowing for an unsupervised deployment of individualized rehabilitation protocols.
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Rehabilitation
Reference55 articles.
1. Hendricks HT, van Limbeek J, Geurts AC, Zwarts MJ: Motor recovery after stroke: a systematic review of the literature. Arch Phys Med Rehabil 2002, 83: 1629-1637. 10.1053/apmr.2002.35473
2. Mathers CD, Loncar D: Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 2006, 3: e442. 10.1371/journal.pmed.0030442
3. Strong K, Mathers C, Bonita R: Preventing stroke: saving lives around the world. Lancet Neurol 2007, 6: 182-187. 10.1016/S1474-4422(07)70031-5
4. WHO: The global burden of disease: 2004 update. In Book The global burden of disease: 2004 update (Editor ed.^eds.). City: World Health Organization; 2008.
5. Nudo RJ: Postinfarct cortical plasticity and behavioral recovery. Stroke 2007, 38: 840-845. 10.1161/01.STR.0000247943.12887.d2
Cited by
242 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献