Author:
Alibiglou Laila,Rymer William Z,Harvey Richard L,Mirbagheri Mehdi M
Abstract
Abstract
Background
Spasticity is a common impairment that follows stroke, and it results typically in functional loss. For this reason, accurate quantification of spasticity has both diagnostic and therapeutic significance. The most widely used clinical assessment of spasticity is the modified Ashworth scale (MAS), an ordinal scale, but its validity, reliability and sensitivity have often been challenged. The present study addresses this deficit by examining whether quantitative measures of neural and muscular components of spasticity are valid, and whether they are strongly correlated with the MAS.
Methods
We applied abrupt small amplitude joint stretches and Pseudorandom Binary Sequence (PRBS) perturbations to both paretic and non-paretic elbow and ankle joints of stroke survivors. Using advanced system identification techniques, we quantified the dynamic stiffness of these joints, and separated its muscular (intrinsic) and reflex components. The correlations between these quantitative measures and the MAS were investigated.
Results
We showed that our system identification technique is valid in characterizing the intrinsic and reflex stiffness and predicting the overall net torque. Conversely, our results reveal that there is no significant correlation between muscular and reflex torque/stiffness and the MAS magnitude. We also demonstrate that the slope and intercept of reflex and intrinsic stiffnesses plotted against the joint angle are not correlated with the MAS.
Conclusion
Lack of significant correlation between our quantitative measures of stroke effects on spastic joints and the clinical assessment of muscle tone, as reflected in the MAS suggests that the MAS does not provide reliable information about the origins of the torque change associated with spasticity, or about its contributing components.
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Rehabilitation
Reference44 articles.
1. Lance JW, Feldman RG, Young RR, Koeller C: Spasticity: disordered motor control. Chicago, IL: Yearbook Medical 1980, 485-494.
2. Booth CM, Cortina-Borja MJ, Theologis TN: Collagen accumulation in muscles of children with cerebral palsy and correlation with severity of spasticity. Dev Med Child Neurol 2001,43(5):314-320. 10.1017/S0012162201000597
3. Foran JRH, Steinman S, Barash I, Chambers H, Lieber RL: Structural and mechanical alterations in spastic skeletal muscle. Dev Med Child Neurol 2005, 47: 713-717. 10.1017/S0012162205001465
4. Lieber RL, Steinman S, Barash IA, Chambers H: Structural and functional changes in spastic skeletal muscle. Muscle Nerve 2004, 29: 615-627. 10.1002/mus.20059
5. Romanini L, Villani C, Meloni C, Calvisi V: Histological and morphological aspects of muscle in infantile cerebral palsy. Ital J Orthop Traumatol 1989,15(1):87-93.
Cited by
114 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献