Author:
Johnson Aimee M,O'Connell Mary J,Miyamoto Hiroshi,Huang Jiaoti,Yao Jorge L,Messing Edward M,Reeder Jay E
Abstract
Abstract
Background
Steroid hormones influence mitogenic signaling pathways, apoptosis, and cell cycle checkpoints, and it has long been known that incidence of bladder cancer (BC) in men is several times greater than in women, a difference that cannot be attributed to environmental or lifestyle factors alone. Castration reduces incidence of chemically-induced BC in rodents. It is unclear if this effect is due to hormonal influences on activation/deactivation of carcinogens or a direct effect on urothelial cell proliferation or other malignant processes. We examined the effect of castration on BC growth in UPII-SV40T transgenic mice, which express SV40 T antigen specifically in urothelium and reliably develop BC. Furthermore, because BC growth in UPII-SV40T mice is exophytic, we speculated BC growth was dependent on angiogenesis and angiogenesis was, in turn, androgen responsive.
Methods
Flat panel detector-based cone beam computed tomography (FPDCT) was used to longitudinally measure exophytic BC growth in UPII-SV40T male mice sham-operated, castrated, or castrated and supplemented with dihydrotestosterone (DHT). Human normal bladder and BC biopsies and mouse bladder were examined quantitatively for thrombospondin-1 (TSP1) protein expression.
Results
Mice castrated at 24 weeks of age had decreased BC volumes at 32 weeks compared to intact mice (p = 0.0071) and castrated mice administered DHT (p = 0.0233; one-way ANOVA, JMP 6.0.3, SAS Institute, Inc.). Bladder cancer cell lines responded to DHT treatment with increased proliferation, regardless of androgen receptor expression levels. TSP1, an anti-angiogenic factor whose expression is inhibited by androgens, had decreased expression in bladders of UPII-SV40T mice compared to wild-type. Castration increased TSP1 levels in UPII-SV40T mice compared to intact mice. TSP1 protein expression was higher in 8 of 10 human bladder biopsies of normal versus malignant tissue from the same patients.
Conclusion
FPDCT allows longitudinal monitoring of exophytic tumor growth in the UPII-SV40T model of BC that bypasses need for chemical carcinogens, which confound analysis of androgen effects. Androgens increase tumor cell growth in vitro and in vivo and decrease TSP1 expression, possibly explaining the therapeutic effect of castration. This effect may, in part, explain gender differences in BC incidence and implies anti-androgenic therapies may be effective in preventing and treating BC.
Publisher
Springer Science and Business Media LLC
Subject
Urology,Reproductive Medicine,General Medicine
Reference49 articles.
1. Madeb R, Messing EM: Gender, racial and age differences in bladder cancer incidence and mortality. Urol Oncol. 2004, 22: 86-92.
2. American Cancer Society: Cancer facts and figures 2007. American Cancer Society, Atlanta. 2007
3. SEER Public-Use 1973–2002 – ASCII Text Data: (Surveillance, Epidemiology, and End Results (SEER) Program Public-Use Data (1973–2002), National Cancer Institute, DCCPS, Surveillance Research Program, Cancer Statistics Branch, released April 2005, based on the November 2004 submission. [http://www.seer.cancer.gov]
4. McGrath M, Michaud DS, De Vivo I: Hormonal and reproductive factors and risk of bladder cancer in women. Am J of Epidemiol. 2005, 163: 213-44.
5. Imaoka S, Yoneda Y, Sugimoto T, Hiroi T, Yamamoto K, Nakatani T, Funae Y: CYP4B1 is a possible risk factor for bladder cancer in humans. Biochem Biophys Res Commun. 2000, 277: 776-80.
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献