Author:
Costa-Bauzá A,Perelló J,Isern B,Sanchis P,Grases F
Abstract
Abstract
Background
The use of extracorporeal shock wave lithotripsy (ESWL) to treat calcium oxalate dihydrate (COD) renal calculi gives excellent fragmentation results. However, the retention of post-ESWL fragments within the kidney remains an important health problem. This study examined the effect of various urinary conditions and crystallization inhibitors on the regrowth of spontaneously-passed post-ESWL COD calculi fragments.
Methods
Post-ESWL COD calculi fragments were incubated in chambers containing synthetic urine varying in pH and calcium concentration: pH = 5.5 normocalciuria (3.75 mM), pH = 5.5 hypercalciuria (6.25 mM), pH = 6.5 normocalciuria (3.75 mM) or pH = 6.5 hypercalciuria (6.25 mM). Fragment growth was evaluated by measuring increases in weight. Fragment growth was standardized by calculating the relative mass increase.
Results
Calcium oxalate monohydrate (COM) crystals formed on COD renal calculi fragments under all conditions. Under pH = 5.5 normocalciuria conditions, only COM crystals formed (growth rate = 0.22 ± 0.04 μg/mg·h). Under pH = 5.5 hypercalciuria and under pH = 6.5 normocalciuria conditions, COM crystals and a small number of new COD crystals formed (growth rate = 0.32 ± 0.03 μg/mg·h and 0.35 ± 0.05 μg/mg·h, respectively). Under pH = 6.5 hypercalciuria conditions, large amounts of COD, COM, hydroxyapatite and brushite crystals formed (growth rate = 3.87 ± 0. 34 μg/mg·h). A study of three crystallization inhibitors demonstrated that phytate completely inhibited fragment growth (2.27 μM at pH = 5.5 and 4.55 μM at pH = 6.5, both under hypercalciuria conditions), while 69.0 μM pyrophosphate caused an 87% reduction in mass under pH = 6.5 hypercalciuria conditions. In contrast, 5.29 mM citrate did not inhibit fragment mass increase under pH = 6.5 hypercalciuria conditions.
Conclusion
The growth rate of COD calculi fragments under pH = 6.5 hypercalciuria conditions was approximately ten times that observed under the other three conditions. This observation suggests COD calculi residual fragments in the kidneys together with hypercalciuria and high urinary pH values may be a risk factor for stone growth. The study also showed the effectiveness of specific crystallization inhibitors in slowing calculi fragment growth.
Publisher
Springer Science and Business Media LLC
Subject
Urology,Reproductive Medicine,General Medicine
Reference22 articles.
1. Krepinsky J, Ingram AJ, Churchill DN: Metabolic investigation of recurrent nephrolithiasis: compliance with recommendations. Urology. 2000, 56: 915-920. 10.1016/S0090-4295(00)00822-0.
2. Grases F, Costa-Bauzá A, Ramis M, Montesinos V, Conte A: Recurrence of renal lithiasis. Scand J Urol Nephrol. 2003, 37: 482-486. 10.1080/00365590310014490.
3. Daudon M, Reveillaud RJ: Whewellite and weddellite: toward a different etiopathogenesis. The significance of morphological typing of calculi. Nephrologie. 1984, 5: 195-201.
4. Galan JA, Conte A, Llobera A, Costa-Bauzá A, Grases F: A comparative study between etiological factors of calcium oxalate monohydrate and calcium oxalate dihydrate urolithiasis. Urol Int. 1996, 56: 79-85.
5. Asplin JR, Lingeman J, Kahnoski R, Mardis H, Parks JH, Coe FL: Metabolic urinary correlates of calcium oxalate dihydrate in renal stones. J Urol. 1998, 159: 664-668. 10.1016/S0022-5347(01)63696-6.
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献