EXTraction of EMR numerical data: an efficient and generalizable tool to EXTEND clinical research

Author:

Cai TianrunORCID,Zhang Luwan,Yang Nicole,Kumamaru Kanako K.,Rybicki Frank J.,Cai Tianxi,Liao Katherine P.

Abstract

Abstract Background Electronic medical records (EMR) contain numerical data important for clinical outcomes research, such as vital signs and cardiac ejection fractions (EF), which tend to be embedded in narrative clinical notes. In current practice, this data is often manually extracted for use in research studies. However, due to the large volume of notes in datasets, manually extracting numerical data often becomes infeasible. The objective of this study is to develop and validate a natural language processing (NLP) tool that can efficiently extract numerical clinical data from narrative notes. Results To validate the accuracy of the tool EXTraction of EMR Numerical Data (EXTEND), we developed a reference standard by manually extracting vital signs from 285 notes, EF values from 300 notes, glycated hemoglobin (HbA1C), and serum creatinine from 890 notes. For each parameter of interest, we calculated the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and F1 score of EXTEND using two metrics. (1) completion of data extraction, and (2) accuracy of data extraction compared to the actual values in the note verified by chart review. At the note level, extraction by EXTEND was considered correct only if it accurately detected and extracted all values of interest in a note. Using manually-annotated labels as the gold standard, the note-level accuracy of EXTEND in capturing the numerical vital sign values, EF, HbA1C and creatinine ranged from 0.88 to 0.95 for sensitivity, 0.95 to 1.0 for specificity, 0.95 to 1.0 for PPV, 0.89 to 0.99 for NPV, and 0.92 to 0.96 in F1 scores. Compared to the actual value level, the sensitivity, PPV, and F1 score of EXTEND ranged from 0.91 to 0.95, 0.95 to 1.0 and 0.95 to 0.96. Conclusions EXTEND is an efficient, flexible tool that uses knowledge-based rules to extract clinical numerical parameters with high accuracy. By increasing dictionary terms and developing new rules, the usage of EXTEND can easily be expanded to extract additional numerical data important in clinical outcomes research.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3