Bayesian network-based missing mechanism identification (BN-MMI) method in medical research

Author:

Yue Tingyan,Zhang Tao

Abstract

Abstract Background Traditional approaches to identify missing mechanisms are usually based on the hypothesis test and confronted with both theoretical and practical challenges. It has been proved that the Bayesian network is powerful in integrating, analyzing and visualizing information, and some previous researches have verified the promising features of Bayesian network to deal with the aforementioned challenges in missing mechanism identification. Based on the above reasons, this paper explores the application of Bayesian network to the identification of missing mechanisms for the first time, and proposes a new method, the Bayesian network-based missing mechanism identification (BN-MMI) method, to identify missing mechanism in medical research. Methods The procedure of BN-MMI method consists three easy-to-implement steps: estimating the missing data structure by the Bayesian network; assessing the credibility of the estimated missing data structure; and identifying the missing mechanism from the estimated missing data structure. The BN-MMI method is verified by simulation research and empirical research. Results The simulation study verified the validity, consistency and robustness of BN-MMI method, and indicated its outperformance in contrast to the traditional logistic regression method. In addition, the empirical study illustrated the applicability of BN-MMI method in the real world by an example of medical record data. Conclusions It was confirmed that the BN-MMI method itself, together with human knowledge and expertise, could identify the missing mechanisms according to the probabilistic dependence/independence relations among variables of interest. At the same time, our research shed light upon the potential application of BN-MMI method to a broader range of missing data issues in medical studies.

Funder

Sichuan Science and Technology Program

Health Commission of Sichuan province

National Natural Science Foundation of China

Chongqing Science and Technology Program

Sichuan University

Liangshan Yi autonomous prefecture Center for Disease Control and Prevention

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3