Quantitative prediction of postpartum hemorrhage in cesarean section on machine learning

Author:

Wang Meng,Yi Gao,Zhang Yunjia,Li Mei,Zhang Jin

Abstract

Abstract Background Cesarean section-induced postpartum hemorrhage (PPH) potentially causes anemia and hypovolemic shock in pregnant women. Hence, it is helpful for obstetricians and anesthesiologists to prepare pre-emptive prevention when predicting PPH occurrence in advance. However, current works on PPH prediction focus on whether PPH occurs rather than assessing PPH amount. To this end, this work studies quantitative PPH prediction with machine learning (ML). Methods The study cohort in this paper was selected from individuals with PPH who were hospitalized at Shijiazhuang Obstetrics and Gynecology Hospital from 2020 to 2022. In this study cohort, we built a dataset with 6,144 subjects covering clinical parameters, anesthesia operation records, laboratory examination results, and other information in the electronic medical record system. Based on our built dataset, we exploit six different ML models, including logistic regression, linear regression, gradient boosting, XGBoost, multilayer perceptron, and random forest, to automatically predict the amount of bleeding during cesarean section. Eighty percent of the dataset was used as model training, and 20$$\%$$ % was used for verification. Those ML models are constantly verified and improved by root mean squared error(RMSE) and mean absolute error(MAE). Moreover, we also leverage the importance of permutation and partial dependence plot (PDP) to discuss their feasibility. Result The experiment results show that random forest obtains the highest accuracy for PPH amount prediction compared to other ML methods. Random forest reaches the mean absolute error of 21.7, less than 5.4$$\%$$ % prediction error. It also gains the root mean squared error of 33.75, less than 9.3$$\%$$ % prediction error. On the other hand, the experimental results also disclose indicators that contributed most to PPH prediction, including Ca, hemoglobin, white blood cells, platelets, Na, and K. Conclusion It effectively predicts the amount of PPH during a cesarean section by ML methods, especially random forest. With the above insight, ML predicting PPH amounts provides early warning for clinicians, thus reducing complications and improving cesarean sections’ safety. Furthermore, the importance of ML and permutation, complemented by incorporating PDP, promises to provide clinicians with a transparent indication of individual risk prediction.

Funder

critical research and development program of Hebei Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3