Classification of imbalanced data using machine learning algorithms to predict the risk of renal graft failures in Ethiopia

Author:

Mulugeta Getahun,Zewotir Temesgen,Tegegne Awoke Seyoum,Juhar Leja Hamza,Muleta Mahteme Bekele

Abstract

Abstract Introduction The prevalence of end-stage renal disease has raised the need for renal replacement therapy over recent decades. Even though a kidney transplant offers an improved quality of life and lower cost of care than dialysis, graft failure is possible after transplantation. Hence, this study aimed to predict the risk of graft failure among post-transplant recipients in Ethiopia using the selected machine learning prediction models. Methodology The data was extracted from the retrospective cohort of kidney transplant recipients at the Ethiopian National Kidney Transplantation Center from September 2015 to February 2022. In response to the imbalanced nature of the data, we performed hyperparameter tuning, probability threshold moving, tree-based ensemble learning, stacking ensemble learning, and probability calibrations to improve the prediction results. Merit-based selected probabilistic (logistic regression, naive Bayes, and artificial neural network) and tree-based ensemble (random forest, bagged tree, and stochastic gradient boosting) models were applied. Model comparison was performed in terms of discrimination and calibration performance. The best-performing model was then used to predict the risk of graft failure. Results A total of 278 completed cases were analyzed, with 21 graft failures and 3 events per predictor. Of these, 74.8% are male, and 25.2% are female, with a median age of 37. From the comparison of models at the individual level, the bagged tree and random forest have top and equal discrimination performance (AUC-ROC = 0.84). In contrast, the random forest has the best calibration performance (brier score = 0.045). Under testing the individual model as a meta-learner for stacking ensemble learning, the result of stochastic gradient boosting as a meta-learner has the top discrimination (AUC-ROC = 0.88) and calibration (brier score = 0.048) performance. Regarding feature importance, chronic rejection, blood urea nitrogen, number of post-transplant admissions, phosphorus level, acute rejection, and urological complications are the top predictors of graft failure. Conclusions Bagging, boosting, and stacking, with probability calibration, are good choices for clinical risk predictions working on imbalanced data. The data-driven probability threshold is more beneficial than the natural threshold of 0.5 to improve the prediction result from imbalanced data. Integrating various techniques in a systematic framework is a smart strategy to improve prediction results from imbalanced data. It is recommended for clinical experts in kidney transplantation to use the final calibrated model as a decision support system to predict the risk of graft failure for individual patients.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Reference50 articles.

1. Stamenic, D., Joint modelling of longitudinal and time-to-event data: analysis of predictive factors of graft outcomes in kidney transplant recipients. 2018, Université de Limoges.

2. Alemu, H., et al., Prevalence of chronic kidney Disease and Associated factors among patients with diabetes in Northwest Ethiopia: A Hospital-Based cross-sectional study. 2020. 92.

3. Wang, J.H. and A.J.K. Hart, Global perspective on kidney transplantation: United States 2021. 2(11): p. 1836.

4. Hart, A., et al., OPTN/SRTR 2017 annual data report: kidney 2019. 19: p. 19–123.

5. Yazigi, N.A., Long term outcomes after pediatric liver transplantation Pediatric gastroenterology, hepatology & nutrition, 2013. 16(4): p. 207–218.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3