Transformer-based deep neural network language models for Alzheimer’s disease risk assessment from targeted speech

Author:

Roshanzamir Alireza,Aghajan Hamid,Soleymani Baghshah MahdiehORCID

Abstract

Abstract Background We developed transformer-based deep learning models based on natural language processing for early risk assessment of Alzheimer’s disease from the picture description test. Methods The lack of large datasets poses the most important limitation for using complex models that do not require feature engineering. Transformer-based pre-trained deep language models have recently made a large leap in NLP research and application. These models are pre-trained on available large datasets to understand natural language texts appropriately, and are shown to subsequently perform well on classification tasks with small training sets. The overall classification model is a simple classifier on top of the pre-trained deep language model. Results The models are evaluated on picture description test transcripts of the Pitt corpus, which contains data of 170 AD patients with 257 interviews and 99 healthy controls with 243 interviews. The large bidirectional encoder representations from transformers (BERTLarge) embedding with logistic regression classifier achieves classification accuracy of 88.08%, which improves the state-of-the-art by 2.48%. Conclusions Using pre-trained language models can improve AD prediction. This not only solves the problem of lack of sufficiently large datasets, but also reduces the need for expert-defined features.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3